• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

四类常见边坡岩石类别识别和边界范围确定的方法

王鹏宇, 王述红

王鹏宇, 王述红. 四类常见边坡岩石类别识别和边界范围确定的方法[J]. 岩土工程学报, 2019, 41(8): 1505-1512. DOI: 10.11779/CJGE201908015
引用本文: 王鹏宇, 王述红. 四类常见边坡岩石类别识别和边界范围确定的方法[J]. 岩土工程学报, 2019, 41(8): 1505-1512. DOI: 10.11779/CJGE201908015
WANG Peng-yu, WANG Shu-hong. Method for identifying four common rock types of slopes and determining boundary range[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1505-1512. DOI: 10.11779/CJGE201908015
Citation: WANG Peng-yu, WANG Shu-hong. Method for identifying four common rock types of slopes and determining boundary range[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1505-1512. DOI: 10.11779/CJGE201908015

四类常见边坡岩石类别识别和边界范围确定的方法  English Version

基金项目: 国家自然科学基金项目(U1602232,51474050); 中央高校基本科研业务专项资金项目(N170108029); 辽宁省自然科学基金项目(20170540304; 20170520341); 东北大学双一流建设项目(2018)
详细信息
    作者简介:

    王鹏宇(1994— ),男,博士研究生,主要从事岩石力学方面的研究工作。E-mail:wangpengyu6666@126.com。

    通讯作者:

    王述红,E-mail:shwang@mail.neu.edu.cn

  • 中图分类号: TU45

Method for identifying four common rock types of slopes and determining boundary range

  • 摘要: 岩质边坡岩石的分类与边界范围的确定对于边坡稳定性的分析至关重要,目前人工方法效率低且受主观因素影响,所以基于Tensorflow建立了岩质边坡图像集分析的卷积神经网络模型,通过卷积操作和池化操作分别对80000张岩质边坡图像进行特征信息的提取和压缩,然后对网络模型进行训练从而实现了岩质边坡岩石的自动识别与分类;采用训练集和测试集中的岩质边坡图像对模型进行检验分析,训练集准确率达到了98%,测试集准确率达到了90%,显示了训练之后的网络模型具有良好的鲁棒性,达到了理想的训练效果。接下来以边坡不同岩石的颜色为主要区分依据,利用深度学习回归操作对岩质边坡不同种类岩石的范围进行确定,为验证算法效果,选取标准彩色岩质边坡图像进行仿真试验,边界检测效果准确。最终采用深度学习建立的网络模型,实现了岩质边坡岩石识别与边界范围划分的快速化、自动化,为后续将图像识别获取的岩质边坡信息导入团队自主研发的GeoSMA-3D软件中,作为对岩质边坡等级判定的重要参数。
    Abstract: Rock classification and boundary determination of rock slopes are very important for the analysis of slope stability. At present, the artificial methods are inefficient and affected by subjective factors. So a convolution neural network model for the image set analysis of a rock slope is established based on Tensorflow. Through convolution operation and pooling operation, the feature information of 8000 original rock slope images is extracted and compressed respectively. Then the network model is trained to realize the automatic recognition and classification of the rock slope. The model is tested and analyzed by using the images of rock slopes in training set and testing set. The accuracy rate of the training set and the testing set is 98% and 90%, respectively. It is shown that the network model after training has good robustness and achieves ideal training effect. Next, the color of different rocks on the slope is taken as the main basis. The boundary of different types of rock on the rock slope is calibrated by the deep learning boundary extraction technology. To verify the effectiveness of the algorithm, the standard color image of the rock slope is selected for simulation experiment, and the results of boundary detection are accurate. The network model established by deep learning realizes the requirements of rapid and automatic rock identification and boundary range division of rock slopes, and introduces the rock slope information acquired by image recognition into the GeoSMA-3D software independently developed by the team,as an important parameter for determining the grade of rock slopes.
  • [1] SINGH C, KAUR K P.A fast and efficient image retrieval system based on color and texture features[J]. Journal of Visual Communication & Image Representation, 2016, 41(10): 41-52.
    [2] SMITH S M, BRADY J M.SUSAN: a new approach to low level image processing[J]. International Journal of Computer Vision, 2015, 23(1): 45-78.
    [3] 王洋, 王述红, 郭牡丹, 等. 隧道掌子面节理信息快速数字识别及稳定性分析[J]. 岩土工程学报, 2011, 33(11): 1734-1739.
    (WANG Yang, WANG Shu-hong, GUO Mu-dan, et al.Fast digital identification of joint information of tunnel work face and its stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1734-1739. (in Chinese))
    [4] BOONSIVANON K, MEESOMBOON A.IKDSIFT: an improved keypoint detection algorithm based-on sift approach for non-uniform illumination[J]. Procedia Computer Science, 2016, 86(2): 269-272.
    [5] ZISSERMAN A, VEDALDI A.Sparse kernel approximations for efficient classification and detection[C]// IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, Hawaii, 2012: 2320-2327.
    [6] KOBAYASHI T.BFO Meets HOG: feature extraction based on histograms of oriented pdf gradients for image classifi- cation[C]// IEEE Conference on Computer Vision and Pattern Recognition. Portland OR, 2013, 91(9): 747-754.
    [7] ZAINI N, van der MEER F, van der WERFF H. Deter- mination of carbonate rock chemistry using laboratory-based hyperspectral imagery[J]. Remote Sensing, 2014, 6(5): 4149-4172.
    [8] 郭清宏, 周永章, 曹姝旻. 广绿玉玉石的矿物学研究[J]. 中山大学学报(自然科学版), 2010, 49(3): 146-151.
    (GUO Qing-hong, ZHOU Yong-zhang, CAO Shu-min.Study on mineralogy of Guangning jade[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2010, 49(3): 146-151. (in Chinese))
    [9] 肖凡, 陈建国, 侯卫生. 2017. 钦—杭结合带南段庞西垌地区Ag-Au致矿地球化学异常信息识别与提取[J]. 岩石学报, 2017, 33(3): 779-790.
    (XIAO Fan, CHEN Jian-guo, HOU Wei-sheng.Identification and extraction of Ag-Au mineralization associated geochemical anomaly in Pangxitong district, southern part of the Qinzhou-Hangzhou Metallogenic Belt, China[J]. Acta Petrologica Sinica, 2017, 33(3): 779-790. (in Chinese))
    [10] 张旗, 金惟俊, 李承东. 再论花岗岩按照Sr-Yb的分类:标志[J]. 岩石学报, 2010, 26(4): 985-1015.
    (ZHANG Qi, JIN Wei-jun, LI Cheng-dong.Revisiting the new classification of granitic rocks based on whole-rock Sr and Yb contents: index[J]. Acta Petrologica Sinica, 2010, 26(4): 985-1015. (in Chinese))
    [11] 张旗, 金惟俊, 李承东. 三论花岗岩按照Sr-Yb的分类: 应用[J]. 岩石学报, 2010, 26(12): 3431-3455.
    (ZHANG Qi, JIN Wei-jun, LI Cheng-dong.On the classification of graniti crocks based on whole-rock Sr and Yb concentrations III: practice[J]. Acta Petrologica Sinica, 2010, 26(12): 3431-3455. (in Chinese))
    [12] 张旭, 蒋建国, 洪日昌. 基于朴素贝叶斯K近邻的快速图像分类算法[J]. 北京航空航天大学学报, 2015, 41(2): 302-310.
    (ZHANG Xu, JIANG Jian-guo, HONG Ri-chang.Accelerated image classification algorithm based on naive Bayes K-nearest neighbor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(2): 302-310. (in Chinese))
    [13] 康丽萍, 孙显, 许光銮.加权KNN的图文数据融合分类[J]. 中国图象图形学报, 2016, 21(7): 854-864.
    (KANG Li-ping, SUN Xian, XU Guang-luan.Fusion method via KNN with weight adjustment for the classification of image-text co-occurrence data[J]. Journal of Image and Graphics, 2016, 21(7): 854-864. (in Chinese))
    [14] 张嘉凡, 张雪娇, 杨更社. 基于聚类算法的岩石CT图像分割及量化方法[J]. 西安科技大学学报, 2016, 36(2): 171-175.
    (ZHANG Jia-fan, ZHANG Xue-jiao, YANG Geng-she.A method of rock CT image segmentation and quantification based on clustering algorithm[J]. Journal of Xi'an University of Science and Technology, 2016, 36(2): 171-175. (in Chinese))
    [15] LI N, HAO H Z, GU Q, et al.A transfer learning method for automatic identification of sandstone microscopic image. Computers & Geosciences, 2017, 103(2): 111-121.
    [16] 谭永杰. 地质大数据体系建设的总体框架研究[J]. 中国地质调查, 2016, 3(3): 1-6.
    (TAN Yong-jie.Study on the overall framework of the construction of large geological data system[J]. Geological Survey of China, 2016, 3(3): 1-6. (in Chinese))
    [17] 郑泽宇, 顾思宇. TENSORFLOW实战GOOGLE深度学习框架[M]. 北京: 电子工业出版社, 2017.
    (ZHENG Ze-yu, GU Si-yu.TENSORFLOW practical GOOGLE deep learning framework[M]. Beijing: Electronic Industry Press, 2017. (in Chinese))
    [18] WU Y C, YIN F, LIU C L.Improving handwritten Chinese text recognition using neural network language models and convolutional neural network shape models[J]. Pattern Recognition, 2017, 65(5): 251-264.
    [19] BIANCO S, BUZZELLI M, MAZZINI D, et al.Deep learning for logo recognition[J]. Neurocomputing, 2017, 245(1): 23-30.
    [20] ESTEVA A, KUPREL B, NOVOA R A, et al.Dermatologist- level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-118.
    [21] GONG M G, YANG H L, ZHANG P Z.Feature learning and change feature classification based on deep learning for ternary change detection in SAR images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 129(2): 212-225.
    [22] 柳厚祥, 李汪石, 查焕奕. 基于深度学习技术的公路隧道围岩分级方法[J]. 岩土工程学报, 2018, 40(10): 1809-1816.
    (LIU Hou-xiang, LI Wang-shi, ZHA Huan-yi.Method for surrounding rock mass classification of highway tunnels based on deep learning technology[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1809-1816. (in Chinese))
    [23] 杨善统, 姜清辉, 尹涛, 等. 边坡临界滑面搜索的改进粒子群优化算法[J]. 岩土工程学报, 2015, 37(8): 1411-1417.
    (YANG Shan-tong, JIANG Qing-hui, YIN Tao, et al.Search of critical slip surface of slopes using improved particle swarm optimization method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1411-1417. (in Chinese))
    [24] 康石磊, 阳军生, 杨峰. 含裂隙类岩试样破坏行为的宏细观数值分析[J]. 长江科学院院报, 2016, 33(4): 71-77.
    (KANG Shi-lei, YANG Jun-sheng, YANG Feng.Macro- and meso-analysis of failure behavior of rock-like samples with flaws using a numerical method[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(4): 71-77. (in Chinese))
  • 期刊类型引用(9)

    1. 张研,郭道静,张树光,苏国韶,刘锋涛. 岩溶区灰岩溶蚀程度卷积神经网络识别及敏感性分析. 应用基础与工程科学学报. 2023(04): 961-976 . 百度学术
    2. 凌同华,陈梓浓,张胜,阳标,张亮. 岩石岩性轻量化网络识别方法及其隧道工程应用. 铁道科学与工程学报. 2023(09): 3604-3615 . 百度学术
    3. 陈昌富,李伟,张嘉睿,廖佳卉,吕晓玺. 山区公路边坡工程智能分析与设计研究进展. 湖南大学学报(自然科学版). 2022(07): 15-31 . 百度学术
    4. 刘飞跃,刘一汉,杨天鸿,信俊昌,张鹏海,董鑫,张海涛. 基于岩芯图像深度学习的矿山岩体质量精细化评价. 岩土工程学报. 2021(05): 968-974 . 本站查看
    5. 王述红,朱宝强. 山岭隧道洞口段地表沉降时序预测研究. 岩土工程学报. 2021(05): 813-821 . 本站查看
    6. 王述红,董福瑞,朱宝强,刘欢,张泽. 山岭隧道围岩参数智能反演及稳定性分析. 应用基础与工程科学学报. 2021(05): 1171-1185 . 百度学术
    7. 王晓琪. 基于量纲分析的岩质边坡稳定性分析模型. 陕西水利. 2021(10): 183-185 . 百度学术
    8. 张紫杉,王述红,王鹏宇,王存根. 岩坡坡面裂隙网络智能识别与参数提取. 岩土工程学报. 2021(12): 2240-2248 . 本站查看
    9. 金云鹏,何习平,吴定邦,秦浩靖,牛景太. 边坡变形预测研究现状与发展趋势. 江西科学. 2020(01): 48-53 . 百度学术

    其他类型引用(14)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 23
出版历程
  • 收稿日期:  2019-01-21
  • 发布日期:  2019-08-24

目录

    /

    返回文章
    返回