• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

原状和压实黄土持水特性及湿陷性对比试验研究

穆青翼, 党影杰, 董琪, 廖红建, 董欢

穆青翼, 党影杰, 董琪, 廖红建, 董欢. 原状和压实黄土持水特性及湿陷性对比试验研究[J]. 岩土工程学报, 2019, 41(8): 1496-1504. DOI: 10.11779/CJGE201908014
引用本文: 穆青翼, 党影杰, 董琪, 廖红建, 董欢. 原状和压实黄土持水特性及湿陷性对比试验研究[J]. 岩土工程学报, 2019, 41(8): 1496-1504. DOI: 10.11779/CJGE201908014
MU Qing-yi, DANG Ying-jie, DONG Qi, LIAO Hong-jian, DONG Huan. Water-retention characteristics and collapsibity behaviors: comparison between intact and compacted loesses[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1496-1504. DOI: 10.11779/CJGE201908014
Citation: MU Qing-yi, DANG Ying-jie, DONG Qi, LIAO Hong-jian, DONG Huan. Water-retention characteristics and collapsibity behaviors: comparison between intact and compacted loesses[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1496-1504. DOI: 10.11779/CJGE201908014

原状和压实黄土持水特性及湿陷性对比试验研究  English Version

基金项目: 国家自然科学基金项目(51879212,41630639); 西部矿产资源与地质工程教育部重点实验室开放基金项目(310826171107); 中国博士后科学基金项目(2018M631166)
详细信息
    作者简介:

    穆青翼(1988— ),男,博士,讲师,主要从事非饱和土力学和环境岩土工程等方面的教学和科研工作。E-mail: qingyimu@mail.xjtu.edu.cn。

    通讯作者:

    廖红建,E-mail:hjliao@mail.xjtu.edu.cn

  • 中图分类号: TU43

Water-retention characteristics and collapsibity behaviors: comparison between intact and compacted loesses

  • 摘要: 通过对比研究具有相同初始干密度和含水率的原状和压实黄土,揭示黄土结构对其持水特性和湿陷性影响。利用扫描电镜观察原状和压实黄土微观结构,对试验结果辅助分析。研究显示:压实黄土持水特征曲线进气值较原状黄土大75%。这可能是由于原状黄土中存在超大团粒间孔隙,造成显著的瓶颈效应。另外,原状黄土持水特征曲线的滞回度在低吸力范围(小于7 kPa)较压实黄土大,而在中间吸力范围(7~80 kPa)较压实黄土小。这是由于原状和压实黄土经历不同脱—吸湿历史。对于湿陷性,高含水率时(大于18%)原状和压实黄土湿陷系数差别不大,而在低含水率(16%)时,原状黄土湿陷系数大于压实黄土。这是由于原状黄土中存在黏土颗粒胶结,使其具有较大抵抗加载变形能力(竖向应力200 kPa)。随后的注水,导致黏土颗粒胶结作用失效,引起较大湿陷变形。此外,原状黄土屈服应力较压实黄土屈服应力增大的程度随含水率减小而显著增加,这说明了原状黄土的结构性随含水率的降低而显著增强。
    Abstract: The compacted and intact loesses with the same dry density and water content are tested to investigate the structural effects on the water-retention characteristics and collapsibility behaviors of loess. The scanning electron microscopy (SEM) tests are carried out to assist in the interpretation of test results. It is found that the air entry value of the intact loess is 75% smaller than that of the compacted loess. This is likely because that the extra-large pores in the intact loess result in pronounced ink-bottle effects. The water-retention curve of the intact loess exhibits larger and smaller hysteresis than that of the compacted loess at suctions ranging from 0.1 to 7 kPa and from 7 to 80 kPa, respectively. This can be explained by the different wetting-drying history experienced by intact and compacted loesses. Similar collapsibility potential is observed for the intact and compacted loesses with high water contents (>18%), whereas the wetting-induced collapsibility of the intact loess is larger than that of the compacted loess with low water content (16%). This is because that the clay bonding in the intact loess results in a more resistant structure. This resistant structure assists in the intact loess to maintain large void ratios during mechanical loading (200 kPa). During soaking, clay bonding is destroyed and significant collapse is induced. In addition, the differences in the yield stress between the intact and compacted loesses increase with the decreasing water content. It is indicated that the resistant structure of the intact loess is enhanced with the decrease of the water content.
  • [1] 陈正汉. 非饱和土与特殊土力学的基本理论研究[J]. 岩土工程学报, 2014, 36(2): 201-272.
    (CHEN Zheng-han.On basic theories of unsaturated soils and special soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 201-272. (in Chinese))
    [2] LIU Z, LIU F, MA F, et al.Collapsibility, composition, and microstructure of loess in China[J]. Canadian Geotechnical Journal, 2015, 53(4): 673-686.
    [3] NG C W W, MU Q Y, ZHOU C. Effects of soil structure on the shear behaviour of an unsaturated loess at different suctions and temperatures[J]. Canadian Geotechnical Journal, 2017, 54(2): 270-279.
    [4] ASSALLAY A M, ROGERS C D F, SMALLEY I J. Formation and collapse of metastable particle packings and open structures in loess deposits[J]. Engineering Geology, 1997, 48(1/2): 101-115.
    [5] CHEN Z H, FREDLUND D G, GAN J K.Overall volume change, water volume change, and yield associated with[J]. Canadian Geotechnical Journal, 1999, 36(2): 321-329.
    [6] 张茂花, 谢永利, 刘保健. 增 (减) 湿时黄土的湿陷系数曲线特征[J]. 岩土力学, 2005, 26(9): 1363-1368.
    (ZHANG Mao-hua, XIE Yong-li, LIU Bao-jian.Characteristics of collapsibility coefficient curves of loess during moistening and demoistening process[J]. Rock and Soil Mechanics, 2005, 26(9): 1363-1368. (in Chinese))
    [7] 卢靖, 程彬. 非饱和黄土土水特征曲线的研究[J]. 岩土工程学报, 2007, 29(10): 1591-1592.
    (LU Jing, CHENG Bin, Research on soil-water characteristic curve of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 29(10): 1591-1592. (in Chinese))
    [8] 王铁行, 卢靖, 岳彩坤. 考虑温度和密度影响的非饱和黄土土-水特征曲线研究[J]. 岩土力学, 2008, 29(1): 1-5.
    (WANG Tie-hang, LU Jing, YUE Cai-kun, Soil-water characteristic curve for unsaturated loess considering temperature and density effect[J]. Rock and Soil Mechanics, 2008, 29(1): 1-5. (in Chinese))
    [9] 关亮, 陈正汉, 黄雪峰, 等. 非饱和填土 (黄土) 的湿化变形研究[J]. 岩石力学与工程学报, 2011, 30(8): 1698-1704.
    (GUAN Liang, CHEN Zheng-han, HUANG Xue-feng, et al.Study of wetting deformation of unsaturated remolded loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(8): 1698-1704. (in Chinese))
    [10] MUNOZCASTELBLANCO J, DELAGE P, PEREIRA J M, et al.Some aspects of the compression and collapse behaviour of an unsaturated natural loess[J]. Géotechnique Letters, 2011, 1(2):17-22.
    [11] 陈存礼, 褚峰, 李雷雷, 等. 侧限压缩条件下非饱和原状黄土的土水特征[J]. 岩石力学与工程学报, 2011, 30(3): 610-615.
    (CHEN Cun-li, CHU Feng, LI Lei-lei, CAO Ze-min, et al.Soi-water characteristics of unsaturated loess under confined compression condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(3): 610-615. (in Chinese))
    [12] 刘奉银, 张昭, 周冬, 等. 密度和干湿循环对黄土土-水特征曲线的影响[J]. 岩土力学, 2011, 32(增刊2): 132-136.
    (LIU Feng-yin, ZHANG Zhao, ZHOU Dong, et al.Effects of initial density and drying-wetting cycle on soil water characteristic curve of unsaturated loess[J]. Rock and Soil Mechanics, 2011, 32(S2): 132-136. (in Chinese))
    [13] 赵天宇, 王锦芳. 考虑密度与干湿循环影响的黄土土水特征曲线[J]. 中南大学学报(自然科学版), 2012, 43(6): 2445-2453.
    (ZHAO Tian-yu, WANG Jin-fang.Soil-water characteristic curve for unsaturated loess soil considering density and wetting-drying cycle effects[J]. Journal of Central South University (Science and Technology), 2012, 43(6): 2445-2453. (in Chinese))
    [14] JIANG M, HU H, LIU F.Summary of collapsible behaviour of artificially structured loess in oedometer and triaxial wetting tests[J]. Canadian Geotechnical Journal, 2012, 49(10): 1147-1157.
    [15] 褚峰, 邵生俊, 陈存礼. 干密度和竖向应力对原状非饱和黄土土水特征影响的试验研究[J]. 岩石力学与工程学报, 2014, 33(2): 413-420.
    (CHU Feng, SHAO Sheng-jun, CHEN Cun-li.Experimental research on influences of dry density and vertical stress on soil water characteristic curves of intact unsaturated loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 413-420. (in Chinese))
    [16] 张登飞, 陈存礼, 杨炯, 等. 侧限条件下增湿时湿陷性黄土的变形及持水特性[J]. 岩石力学与工程学报, 2016, 35(3): 604-612.
    (ZHANG Deng-fei, CHEN Cun-li, YANG Jiong, et al.Deformation and water retention behaviour of collapsible loess during wetting under lateral confinement[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(3): 604-612. (in Chinese))
    [17] 韦锋, 姚志华, 苏立海, 等. 非饱和Q3原状黄土及其重塑土的持水特性研究[J]. 工程勘察, 2015, 43(8): 1-5.
    (WEI Feng, YAO Zhi-hua, SU Li-hai, et al.Study on water holding capacity of unsaturated undisturbed and remolded loess of Q3[J]. Geotechnical Investigation & Surveying, 2015, 43(8): 1-5. (in Chinese))
    [18] 邵生俊, 王丽琴, 邵帅, 等. 黄土的结构屈服及湿陷变形的分析[J]. 岩土工程学报, 2017, 39(8): 1357-1365.
    (SHAO Sheng-jun, WANG Li-qin, SHAO Shuai, et al.Structural yield and collapse deformation of loess[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1357-1365. (in Chinese))
    [19] 陈存礼, 张登飞, 张洁, 等. 等向应力下原状黄土的压缩及增湿变形特性研究[J]. 岩石力学与工程学报, 2017, 36(7): 1736-1747.
    (CHEN Cun-li, ZHANG Deng-fei, ZHANG Jie, et al.Compression and wetting deformation behavior of intact loess underisotropic stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(7): 1736-1747. (in Chinese))
    [20] 王娇, 邵生俊, 陈攀. 非饱和重塑黄土的土水特性及压缩屈服与湿陷性的研究[J]. 岩土力学, 2017, 38(增刊2): 217-222.
    (WANG Jiao, SHAO Sheng-jun, CHEN Pan.Experimental study of soil water properties, compression yield and collapse deformation of unsaturated remolded loess[J]. Rock and Soil Mechanics, 2017, 38(S2): 217-222. (in Chinese))
    [21] 杨玉生, 李靖, 邢义川, 等. 压实黄土增湿变形性质及其影响因素试验研究[J]. 岩土工程学报, 2017, 39(4): 626-635.
    (YANG Yu-sheng, LI Jing, XING Yi-chuan, et al.Experimental study on moistening deformation characteristics of compacted loess and their influencing factors[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 626-635. (in Chinese))
    [22] 马闫, 王家鼎, 彭淑君, 等. 大厚度黄土自重湿陷性场地浸水湿陷变形特征研究[J]. 岩土工程学报, 2014, 36(3): 537-546.
    (MA Yan, WANG Jia-ding, PENG Shu-jun, et al.Immersion tests on characteristics of deformation of self-weight collapsible loess under overburden pressure[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 537-546. (in Chinese))
    [23] 邵生俊, 李骏, 邵将, 等. 大厚度湿陷性黄土地层的现场砂井浸水试验研究[J]. 岩土工程学报, 2016, 38(9): 1549-1558.
    (SHAO Sheng-jun, LI Jun, SHAO Jiang, et al.In-situ sand well immersion tests on self-weight collapsible loess site with large depth[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1549-1558. (in Chinese))
    [24] 安鹏, 张爱军, 邢义川, 等. 伊犁深厚湿陷性黄土浸水入渗及沉降变形特征分析[J]. 岩土力学, 2017, 38(2): 557-564.
    (AN Peng, ZHANG Ai-jun, XING Yi-chuan, et al.Analysis of soak infiltration and deformation characteristics for thick collapsible loess in Ili region[J]. Rock and Soil Mechanics, 2017, 38(2): 557-564. (in Chinese))
    [25] ZHAN T L T, YANG Y B, CHEN R, et al. Influence of clod size and water content on gas permeability of a compacted loess[J]. Canadian Geotechnical Journal, 2014, 51(12): 1468-1474.
    [26] PHAMH Q, FREDLUND D G, BARBOUR S L.A study of hysteresis models for soil-water characteristic curves[J]. Canadian Geotechnical Journal, 2005, 42(6): 1548-1568.
    [27] MU Q Y, NG C W W, ZHOU C, et al. A new model for capturing void ratio-dependent unfrozen water characteristics curves[J]. Computers and Geotechnics, 2018, 101: 95-99.
    [28] LU N, KHORSHIDI M.Mechanisms for soil-water retention and hysteresis at high suction range[J]. Journal of Geotechnical and Geoenvironmental Engineering,2015, 141(8): 04015032.
    [29] WHEELER S J, SHARMA R S, BUISSON M S R. Coupling of hydraulic hysteresis and stress-strain behaviour in unsaturated soils[J]. Géotechnique, 2003, 53(1): 41-54.
    [30] 武小鹏, 赵永虎, 徐安花, 等. 黄土湿陷性与其物理力学指标的关系及评价方法[J]. 长江科学院院报, 2018, 35(6), 75-80.
    (WU Xiao-peng, ZHAO Yong-hu, XU An-hua, et al.Correlation of collapsibility of loess with physical indexes and evaluation methods[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(6), 75-80. (in Chinese))
    [31] ALONSO E E, PINYOL N M, GENS A.Compacted soil behaviour: initial state, structure and constitutive modeling[J]. Géotechnique, 2013, 63(6): 463-478.
    [32] SIVAKUMAR V, WHEELER S J.Influence of compaction procedure on the mechanical behaviour of an unsaturated compacted clay: part 1 wetting and isotropic compression[J]. Géotechnique, 2010, 50(4): 359-36.
  • 期刊类型引用(24)

    1. 任占雷,李泽杰,段梦强,翁效林. 考虑基质吸力影响的重塑黄土的临界状态模型. 公路交通科技. 2025(03): 104-114 . 百度学术
    2. 慕焕东,何也,白逸松,邓亚虹,郑龙浩. 靖边Q_3砂质黄土湿陷特征及其微观机制研究. 岩土力学. 2024(10): 3024-3036 . 百度学术
    3. 秦灵伟,张锐,李露,肖宇鹏. 不同干湿状态下高液限土变形特性对比试验研究. 中外公路. 2024(06): 98-105 . 百度学术
    4. 王寒,黄雪峰,邱明明,王博. 压实黄土高压力下湿陷变形特性试验研究. 自然灾害学报. 2023(01): 122-130 . 百度学术
    5. 宋佳,白杨,王小林. 基于深度学习的黄土干湿循环损伤分析. 长江科学院院报. 2023(02): 87-94 . 百度学术
    6. 赵鑫鑫,姜彤,赵金玓,张俊然. 国道G310三门峡豫西黄土湿陷特性及其微观分析. 华北水利水电大学学报(自然科学版). 2023(03): 89-93+101 . 百度学术
    7. 邓友生,李龙,孙雅妮,姚志刚,孟丽青. 水泥粉煤灰处理湿陷性黄土路基承载性能. 交通运输工程学报. 2023(04): 92-103 . 百度学术
    8. 吕龙龙,廖红建,伏映鹏,夏龙飞,冷先伦. 基于应变能密度映射的黄土结构性参数研究. 岩石力学与工程学报. 2022(02): 399-411 . 百度学术
    9. 伏映鹏,廖红建,吕龙龙,柴小庆. 考虑接触角及粒径级配影响的土水特征曲线滞回模型. 岩土工程学报. 2022(03): 502-513 . 本站查看
    10. 安达. 北方深厚湿陷性黄土场地地基处理. 粘接. 2022(05): 154-158 . 百度学术
    11. 穆青翼,郑建国,于永堂,孟龙龙,刘芬良. 基于时域反射技术(TDR)的黄土湿陷原位评价研究. 岩土工程学报. 2022(06): 1115-1123 . 本站查看
    12. 李晓敏,穆青翼,丁心安,朱文秀,刘奉银. 黄土填方场地工后持水特性及雨水入渗研究. 水利与建筑工程学报. 2022(04): 162-168+175 . 百度学术
    13. 李晓敏,穆青翼,丁心安,朱文秀,王艳娥. 制样含水率对压实黄土持水及变形特性影响试验研究. 水利与建筑工程学报. 2022(05): 123-130 . 百度学术
    14. 邓伦宇. 使用动态规划结合有限元应力场对湿陷性土坝进行瞬态稳定性分析. 四川水利. 2022(05): 33-36 . 百度学术
    15. 苏清浩. 基于AHP层次分析法的湿陷性黄土隧道洞口施工风险管理研究. 青海交通科技. 2022(03): 126-130 . 百度学术
    16. 牛丽思,张爱军,王毓国,任文渊,张婉. 湿度和密度变化下伊犁黄土的压缩和湿陷特性. 水力发电学报. 2021(02): 167-176 . 百度学术
    17. 赵金玓,高宇甲,霍继炜,韩明涛,姜彤,张俊然,朱云江. 结构性对黄土抗剪强度的影响研究——以国道G310三门峡段为例. 水利与建筑工程学报. 2021(02): 6-11 . 百度学术
    18. 中国路基工程学术研究综述·2021. 中国公路学报. 2021(03): 1-49 . 百度学术
    19. 梁志超,胡再强,郭婧,王凯,冯哲,折海成. 非饱和石灰黄土土水特征与压缩湿陷特性研究. 水力发电学报. 2020(03): 66-75 . 百度学术
    20. 毛忠安,陈恒大. 基于正负摩阻力的湿陷性黄土桩端承载力数值分析. 西部大开发(土地开发工程研究). 2020(02): 40-43 . 百度学术
    21. 陈香凤,徐建军. 浅谈含水量对黄土湿陷性的影响. 中国建材科技. 2020(02): 66+124 . 百度学术
    22. 赵宽耀,许强,刘方洲,张先林. 黄土中优势通道渗流特征研究. 岩土工程学报. 2020(05): 941-950 . 本站查看
    23. 刘钊钊,王谦,钟秀梅,刘富强,梁收运,高中南. 木质素改良黄土的持水性和水稳性. 岩石力学与工程学报. 2020(12): 2582-2592 . 百度学术
    24. 李西伟. 某河道治理工程中岸坡土体渗透特性分析研究. 广东水利水电. 2020(12): 62-66 . 百度学术

    其他类型引用(37)

计量
  • 文章访问数:  327
  • HTML全文浏览量:  18
  • PDF下载量:  331
  • 被引次数: 61
出版历程
  • 收稿日期:  2018-07-31
  • 发布日期:  2019-08-24

目录

    /

    返回文章
    返回