Experimental study on precipitation rate of MICP under low temperatures
-
摘要: 低温导致微生物固化沉淀产率低,制约着该技术的应用。选取巨大芽孢杆菌,通过控制不同温度和pH值分析该菌种的生长繁殖特性和脲酶活性,并研究不同温度条件下的碳酸钙沉淀产率,通过采用营养液中添加尿素和低温驯化两种方法来提高低温条件下较低的沉淀产率,最后通过砂土固化试验,对比研究尿素添加方法和低温驯化对固化效果的影响。结果表明:温度越高,巨大芽孢杆菌的生长繁殖越快,脲酶活性越强,低温明显抑制其生长繁殖和脲酶活性;pH为8时,巨大芽孢杆菌生长繁殖最快,且脲酶活性最强;温度越高,沉淀产率越大;营养液中添加尿素和对巨大芽孢杆菌进行低温驯化都可以明显提高生长繁殖速度和沉淀产率,可以有效解决低温条件下碳酸钙沉淀不足问题,而将两者结合起来,沉淀产率提升更为明显;营养液中添加尿素和低温驯化都能提高砂土固化效果,而同时采用这两种方法固化效果提升更明显,该研究能有效解决低温条件沉淀少阻碍实际工程应用的问题,为后续低温条件微生物固化技术的应用打下基础。Abstract: The low deposition rate of microbial solidification technology in low temperatures often restricts its application. Bacillus megaterium is chosen, and by controlling the different temperatures and pH values, the growth characteristics and urease activities of such strain are analyzed, and the calcium carbonate precipitation yields under different temperature conditions are studied. By adding urea to nutrient solution and the domestication in low temperatures, the low precipitation rate is improved. Finally, the sand solidification tests are conducted to comparatively study the curing effect with adding urea to medium or the domestication of Bacillus megaterium in low temperatures. The results show that the higher the temperature, the faster the growth and reproduction of Bacillus megaterium and the stronger the urease activity. Low temperatures obviously inhibit its growth and urease activity. When pH is 8, the growth and reproduction of bacillus are the fastest, and the urease activity is the strongest. The higher the temperature, the higher the deposition rate. Adding urea to nutrient solution and the domestication of Bacillus megaterium in low temperatures both can obviously increase the speed of reproduction and precipitation yield, which can effectively solve the problem of lacking calcium carbonate precipitation at low temperatures. By combining the two methods, the increase in sediment yields is more obvious. Adding urea to nutrient solution and the domestication of Bacillus megaterium in low temperatures both can improve the effect of soil solidification, and at the same time, using the two methods together, the curing effect promotion is more obvious. Therefore, the study can effectively solve the problem that less precipitation at low temperatures will obstacle actual engineering application, and lay a solid foundation for the subsequent application of MICP technology at low temperatures.
-
Keywords:
- low temperature /
- Bacillus megaterium /
- precipitation rate /
- urea /
- domestication /
- sand solidification
-
[1] WHIFFIN V S.Microbial CaCO3 precipitation for the production of biocement[D]. Perth: Murdoch University, 2004. [2] 钱春香, 王安辉, 王欣. 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36(6): 1537-1548.
(QIAN Cun-xiang, WANG An-hui, WANG Xin.Advances of soil improvement with bio-grouting[J]. Rock & Soil Mechanics, 2015, 36(6): 1537-1548. (in Chinese))[3] WHIFFIN V S, VAN Paassen L A, HARKES M P. Microbial carbonate precipitation as a soil improvement technique[J]. Geomicrobiology Journal, 2007, 24(5): 417-423. [4] DEJONG J T, MORTENSEN M B, MARTINEZ B C, et al.Biomediated soil improvement[J]. Ecological Engineering, 2010, 36(2): 197-210. [5] VAN PAASSEN L A, DAZA C M, STAAL M, et al. Potential soil reinforcement by biological denitrification[J]. Ecological Engineering, 2010, 36(2): 168-175. [6] WARTHMANN R, VAN LITH Y, VASCONCELOS C, et al.Bacterially induced dolomite precipitation in anoxic culture experiments[J]. Geology, 2000, 28(12): 1091-1094. [7] WEAVER T, BURBANK M, LEWIS R, et al.Bio-induced calcite, iron, and manganese precipitation for geotechnical engineering applications[C]// Proceedings of GeoFrontiers 2011: Advances in Geotechnical Engineering. Dallas, 2011: 3975-3983. [8] CHU J, IVANOV V.Iron- and calcium-based biogrouts for soil improvement[C]// Proceedings of Geo-Congress 2014. Atlanta, 2014: 1596-1601. [9] HARKES M P, VAN PAASSEN L A, BOOSTER J L, et al. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement[J]. Ecological Engineering, 2010, 36(2): 112-117. [10] 孙潇昊, 缪林昌, 童天志, 等. 微生物沉积碳酸钙固化砂土试验研究[J]. 岩土力学, 2017, 38(11): 3225-3230.
(SUN Xiao-hao, MIAO Lin-chang, TONG Tian-zhi, et al.Sand solidification test based on microbially-induced precipitation of calcium carbonate[J]. Rock and Soil Mechanics, 2017, 38(11): 3225-3230. (in Chinese))[11] 孙潇昊, 缪林昌, 童天志, 等. 砂土微生物固化过程中尿素的影响研究[J]. 岩土工程学报, 2018, 40(5): 939-944.
(SUN Xiao-hao, MIAO Lin-chang, TONG Tian-zhi, et al.Effect of methods of adding urea in culture media on sand solidification tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 939-944. (in Chinese))[12] 张慧智, 史学正, 于东升, 等. 中国土壤温度的季节性变化及其区域分异研究[J]. 土壤学报, 2009, 46(2): 227-234.
(ZHANG Hui-zhi, SHI Xue-zheng, YU Dong-sheng, et al.Seasonal and regional veriations of soil temperature in China[J]. Acta Pedologica Sinica, 2009, 46(2): 227-234. (in Chinese))[13] 彭劼, 何想, 刘志明, 等. 低温条件下微生物诱导碳酸钙沉积加固土体的试验研究[J]. 岩土工程学报, 2016, 38(10): 1769-1774.
(PENG Jie, HE Xiang, LIU Zhi-ming, et al.Experimental research on influence of low temperature on MICP-treated soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1769-1774. (in Chinese))[14] GARRITY G, VOS P D, JONES D, et al.Bergey’s manual of systematic bacteriology. volume 3. the firmicutes[M]// Bergey's Manual of Systematic Bacteriology. Springer, 2009: 89-100. [15] FREDRICKSON J K, FLETCHER M.Subsurface microbiology and biogeochemistry[M]. New York: Wiley, 2001. [16] JIANG N J, YOSHIOKA H, YAMAMOTO K, et al.Ureolytic activities of a urease-producing bacterium and purified urease enzyme in the anoxic condition: Implication for subseafloor sand production control by microbially induced carbonate precipitation (MICP)[J]. Ecological Engineering, 2016, 90:96-104. [17] ZHANG Y, GUO H X, CHENG X H.Role of calcium sources in the strength and microstructure of microbial mortar[J]. Construction and Building Materials, 2015, 77: 160-167. [18] 徐亚同. pH值、温度对反硝化的影响[J]. 中国环境科学, 1994, 14(4): 308-313.
(XU Ya-tong.The influence of pH values and temperature on denitrification[J]. China Environmental Science, 1994, 14(4): 308-313. (in Chinese)) -
期刊类型引用(12)
1. 倪勇军,李文荣,宋维昌,张生华,李军,田乾,关博文. 低温环境微生物灌入法修复砂浆效果及性能研究. 硅酸盐通报. 2024(02): 478-486+533 . 百度学术
2. 刘浩,唐朝生,吕超,章君政,泮晓华,王宝军. 砂颗粒矿物成分对MICP过程的影响及机理. 岩土工程学报. 2024(09): 1956-1964 . 本站查看
3. 梅奥然,李涛,高颖. 矿区地表裂隙土体MICP纤维加筋修复研究. 中国水运(下半月). 2022(01): 124-126 . 百度学术
4. 王德发. MICP加固页岩填筑体最优注浆间距试验研究. 路基工程. 2022(04): 119-122 . 百度学术
5. 肖海,胡欢,吕广柳,张文琪,朱志恩,向瑞,杨悦舒,夏振尧,旺杰. 微生物诱导碳酸钙沉淀影响因素研究进展分析. 三峡大学学报(自然科学版). 2022(06): 66-75 . 百度学术
6. 高旭波,潘振东,龚培俐,江玉,李成城,李鸿煜. 微生物诱导碳酸盐岩沉淀过程及作用机理. 中国岩溶. 2022(03): 441-452 . 百度学术
7. 马允栋. 沙埕湾跨海大桥筑岛施工潮间带钻孔桩技术探讨. 中国水运. 2022(02): 126-128 . 百度学术
8. 王恒星,缪林昌,孙潇昊,吴林玉. 微生物诱导固化技术研究进展. 湖南大学学报(自然科学版). 2021(01): 70-81 . 百度学术
9. 马国梁,何想,路桦铭,吴焕然,刘汉龙,楚剑,肖杨. 高岭土微粒固载成核微生物固化粗砂强度. 岩土工程学报. 2021(02): 290-299 . 本站查看
10. 秦鹏飞,王为林,袁媛. 岩土工程注浆技术与其应用研究. 地质与勘探. 2021(03): 631-639 . 百度学术
11. 秦鹏飞. 不良地质体注浆技术研究述评. 金属矿山. 2019(06): 1-5 . 百度学术
12. 王绪民,崔芮,王铖. 微生物诱导CaCO_3沉淀胶结砂室内试验研究进展. 人民长江. 2019(09): 153-160 . 百度学术
其他类型引用(21)
计量
- 文章访问数: 353
- HTML全文浏览量: 11
- PDF下载量: 151
- 被引次数: 33