• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

高岭-蒙脱混合黏土渗透各向异性的微观机理研究

周建, 徐杰, 余良贵, 罗凌晖

周建, 徐杰, 余良贵, 罗凌晖. 高岭-蒙脱混合黏土渗透各向异性的微观机理研究[J]. 岩土工程学报, 2019, 41(6): 1005-1013. DOI: 10.11779/CJGE201906003
引用本文: 周建, 徐杰, 余良贵, 罗凌晖. 高岭-蒙脱混合黏土渗透各向异性的微观机理研究[J]. 岩土工程学报, 2019, 41(6): 1005-1013. DOI: 10.11779/CJGE201906003
ZHOU Jian, XU Jie, YU Liang-gui, LUO Ling-hui. Microscopic mechanism regarding permeability anisotropy of kaolin-montmorillonite mixed clays[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1005-1013. DOI: 10.11779/CJGE201906003
Citation: ZHOU Jian, XU Jie, YU Liang-gui, LUO Ling-hui. Microscopic mechanism regarding permeability anisotropy of kaolin-montmorillonite mixed clays[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1005-1013. DOI: 10.11779/CJGE201906003

高岭-蒙脱混合黏土渗透各向异性的微观机理研究  English Version

基金项目: 2016国家重点研发计划项目(2016YFC0800203); 国家自然科学基金重点项目(51338009)
详细信息
    作者简介:

    周 建(1970— ),女,教授,从事软黏土力学,软土地基处理,非饱和土本构模型等研究。E-mail:zjelim@zju.edu.cn。

  • 中图分类号: TU43

Microscopic mechanism regarding permeability anisotropy of kaolin-montmorillonite mixed clays

  • 摘要: 为研究高岭-蒙脱混合黏土中膨润土掺入量及固结应力对渗透各向异性比的影响,利用三轴渗透仪对高岭-蒙脱混合黏土展开一系列渗流试验,并从微观结构的改变上进行机理解读,研究发现:①加入膨润土后,渗透系数及渗透各向异性比明显减小,但随着膨润土掺入量的增加,渗透各向异性比趋于稳定,原因是影响渗透各向异性比的有效孔隙权重比趋于不变,导致渗透各向异性比不再发生明显改变;②随着有效固结应力的增大,混合黏土的渗透各向异性比不断增大。有效固结应力增大时,有效孔隙面积比和有效孔隙权重比均在增加,导致固结应力增大时渗透各向异性比增大;③综合膨润土掺入量及固结应力对混合黏土渗透各向异性比的影响,若从微观结构上定量分析,建议采用有效孔隙权重比作为微观参数。
    Abstract: A series of experiments are conducted by using the triaxial permeameters to study the influences of the incorporation ratio of bentonite and the effective consolidation stress on permeability anisotropy, and the corresponding microscopic mechanisms are investigated. The results show that: (1) When the bentonite is added, the permeability coefficient and permeability anisotropy of the mixed soil decrease significantly, but with the increasing incorporation ratio of bentonite, the permeability anisotropy tends to be stable because the effective pore proportion ratio tends to remain constant. (2) With the increasing effective consolidation stress, the permeability anisotropy of the mixed soil increases. When the effective consolidation stress increases, both the effective pore area ratio and the effective pore proportion ratio increase, which indicates that the ratio of vertical to horizontal effective pore areas is increasing. (3) Considering the influences of the incorporation ratio of bentonite and the effective consolidation stress comprehensively, if intending to quantitatively analyze the impact of these two factors from the perspective of microscopic analysis, it is recommended to use the effective pore proportion ratio as the parameter of microstructure.
  • [1] MAIR R J.Tunnelling and geotechnics: new horizons[J]. Géotechnique, 2008, 58(9): 695-736.
    [2] AL-SHARRAD M A, GALLIPOLI D, WHEELER S J, et al. Experimental investigation of evolving anisotropy in unsaturated soils[J]. Géotechnique, 2017, 67(12): 1033-1049.
    [3] BASAK P.Soil structure and its effects on hydraulic conductivity[J]. Soil Science, 1972, 114(6): 417-422.
    [4] TAVENAS F, JEAN P, LEBLOND P, et al.The permeability of natural soft clays, Part II: Permeability characte[J]. Canadian Geotechnical Journal, 1983, 20(4): 645-660.
    [5] LEROUEIL S, BOUCLIN G, TAVENAS F, et al.Permeability anisotropy of natural clays as a function of strain[J]. Canadian Geotechnical Journal, 1990, 27(5): 568-579.
    [6] ADAMS A L, NORDQUIST M T J, GERMAINE J T, et al. Permeability anisotropy and resistivity anisotropy of mechanically compressed mudrocks[J]. Canadian Geotechnical Journal, 2016, 53(9): 1474-1482.
    [7] KENNEY T C.Permeability ratio of repeatedly layered soils[J]. Géotechnique, 1963, 13(4): 325-333.
    [8] K-J-Witt J Brauns. Permeability-anisotropydue to particle shapej[J]. Geotech Engrg, 1983, 109: 1181-1187.
    [9] AL-TABBAA, WOOD D M.Some measurements of the permeability of kaolin[J]. Géotechnique, 1987, 37: 499-503.
    [10] DAIGLE H, DUGAN B.Permeability anisotropy and fabric development: A mechanistic explanation[J]. WaterResour Res, 2011, 47: W12517.
    [11] 柯瀚, 吴小雯, 张俊, 等. 基于优势流及各向异性随上覆压力变化的填埋体饱和渗流模型[J]. 岩土工程学报, 2016, 38(11): 1957-1964.
    (KE Han, WU Xiao-wen, ZHANG Jun, et al.Modeling saturated permeability of municipal solid waste based on compression change of its preferential flow and anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1957-1964. (in Chinese))
    [12] ZHANG D M, MA L X, ZHANG J, et al.Ground and tunnel responses induced by partial leakage in saturated clay with anisotropic permeability[J]. Engineering Geology, 2015, 189: 104-115.
    [13] WONGSAROJ J, SOGA K, MAIR R J.Modelling of long-term ground response to tunnelling under St James' Park, London[J]. Géotechnique, 2007, 57(1): 75-90.
    [14] 王宝峰. 孔隙溶液环境对黏土力学特性影响的试验研究[D]. 杭州: 浙江大学, 2017.
    (WANG Bao-feng.Experimental study on influence of pore solution environment on mechanical properties of clay[D]. Hangzhou: Zhejiang University, 2017. (in Chinese))
    [15] ZAKERI A, CLUKEY E C, KEBADZE E B, et al.Fatigue analysis of offshore well conductors, Part I: Study overview and evaluation of Series 1 centrifuge tests in normally consolidated to lightly over-consolidated kaolin clay[J]. Applied Ocean Research, 2016, 57:78-95.
    [16] MESRI and Olson. Mechanisms controlling thepermeability of clays[J]. Claysand ClayMinerals, 1971, 19: 151-158.
    [17] HORPIBULSUK S, YANGSUKKASEAM N, CHINKULKIJNIWAT A, et al.Compressibility and permeability of Bangkok clay compared with kaolinite and bentonite[J]. Applied Clay Science, 2011, 52(1/2): 150-159.
    [18] ASTM D5084—03 Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter[S]. 2003.
    [19] 赵铁军, 姜福香. 海底隧道工程耐久性技术[M]. 北京: 人民交通出版社, 2010.
    (ZHAO Tie-jun, JIANG Fu-xiang.Submarine tunnel engineering durability technology[M]. Beijing: China Communications Press, 2010. (in Chinese))
    [20] 李国刚. 中国近海表层沉积物中黏土矿物的组成、分布及其地质意义[J]. 海洋学报(中文版), 1990(4): 470-479.
    (LI Guo-gang.Composition, distribution and geological significance of clay minerals in surface sediments from china offshore[J]. Journal of Oceanography, 1990(4): 470-479. (in Chinese))
    [21] 吉利明, 邱军利, 夏燕青, 等. 常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性[J]. 石油学报, 2012, 33(2): 249-256.
    (JI Li-ming, QIU Jun-li, XIA Yan-qing, et al.Micro-pore characteristics and methane absorption properties of common clay minerals by electron microscope scanning[J]. Acta Petrolei Sinica, 2012, 33(2): 249-256. (in Chinese))
    [22] 何俊, 王宇, 万娟. 溶液作用下黏土的界限含水率及渗透试验[J]. 地下空间与工程学报, 2013, 9(6): 1277-1282.
    (HE Jun, WANG Yu, WAN Juan.Consistency limits and hydraulic conductivity of clay under the effect of solution[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(6): 1277-1282. (in Chinese))
    [23] 陈永贵, 雷宏楠, 贺勇, 等. 膨润土-红黏土混合土对NaCl溶液的渗透试验研究[J]. 中南大学学报(自然科学版), 2018, 49(4): 910-915.
    (CHEN Yong-gui, LEI Hong-nan, HE Yong, et al.Experimental study of permeability of bentonite-laterite mixtures for salt solutions[J]. Journal of Central South University (Science and Technology), 2018, 49(4): 910-915. (in Chinese))
    [24] YANG Y, APLIN A.Permeability and petrophysical propertiesof 30 natural mudstones[J]. J Geophys Res, 2007, 112: B03206.
    [25] CLEMENLTA LAPIERRE.Mercury intrusion and permeability of Louiseville clay[J]. Can Geotech J, 1990, 27: 761-773.
    [26] CLENNELL M B, DEWHURST D N, BROWN K M, et al.Permeability anisotropy of consolidated clays[J]. Geological Society, London, Special Publications, 1999(158): 79-96.
    [27] 曹洋. 波浪作用下原状软黏土动力特性与微观结构关系试验研究[D]. 杭州: 浙江大学, 2013.
    (CAO Yang.Experimental study on relationship between dynamic characteristics and microstructure of undisturbed soft clay under wave action[D]. Hangzhou: Zhejiang University, 2013. (in Chinese))
    [28] 党发宁, 刘海伟, 王学武, 等. 基于有效孔隙比的黏性土渗透系数经验公式研究[J]. 岩石力学与工程学报, 2015, 34(9): 1909-1917.
    (DANG Fa-ning, LIU Hai-wei, WANG Xue-wu, et al.Empirical formulas of permeability of clay based on effective pore ratio[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(9): 1909-1917. (in Chinese))
    [29] 崔德山, 项伟, 曹李靖, 等. ISS 减小红色黏土结合水膜的试验研究[J]. 岩土工程学报, 2010, 32(6): 944-949.
    (CUI De-shan, XIANG Wei, CAO Li-jing, et al.Experimental study on reducing thickness of adsorbed water layer for red clay particles treated by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 944-949. (in Chinese))
    [30] 王秀艳, 刘长礼. 深层黏性土渗透释水规律的探讨[J].岩土工程学报, 2003, 25(3): 308-312.
    (WANG Xiu-yan, LIU Chang-li.Discussion on permeability of deep clayey soil[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 308-312. (in Chinese))
    [31] 冯晓腊, 沈孝宇. 饱和黏性土的渗透固结特性及其微观机制的研究[J]. 水文地质工程地质, 1991(1): 6-12.
    (FENG Xiao-la, SHEN Xiao-yu.Study on the infiltration and consolidation characteristics of saturated clay and its microscopic mechanism[J]. Hydrogeology and Engineering Geology, 1991(1): 6-12.(in Chinese))
    [32] TANAKA. Poer size distribution of clayey soils measured by mercuryintrusion porosimetry and its relation to hydraulic conductivity[J]. Soils and Foundations, 43(6): 63-73.
  • 期刊类型引用(8)

    1. 蔡永浩,薛凯仁,刘开富. 交通荷载下桩网复合地基承载变形特性模型试验. 土工基础. 2025(01): 154-158 . 百度学术
    2. 徐传堡,贾亚飞,郑俊杰,郑烨炜. 循环荷载下筋材对桩承式低路堤荷载传递机制的影响试验. 中国公路学报. 2024(06): 66-75 . 百度学术
    3. 何忠明,罗仕佳,王盘盘. 桩承式加筋垫层路堤荷载分担改进计算模型. 中南大学学报(自然科学版). 2024(06): 2286-2294 . 百度学术
    4. 刘吉. 桩承式加筋路堤土拱效应试验分析. 工程技术研究. 2024(24): 17-19 . 百度学术
    5. 李烁. 人工封装桩处理下水闸软土复合地基土力学特性试验研究. 江西水利科技. 2023(02): 91-95 . 百度学术
    6. 陈龙,柴浙炜,沈政,陈永辉,谢晨雷,李德晟. 就地固化土层联合桩复合地基桩土应力比分析. 岩石力学与工程学报. 2023(10): 2578-2587 . 百度学术
    7. 曹军,叶庭,李潭潭,王康宇. 基于不同路堤加筋形式的土拱效应离散元. 科学技术与工程. 2023(33): 14420-14427 . 百度学术
    8. 刘浩,高泉平,李纪昕,李良昊,张颖,丁锐恒,芮瑞. 深厚软土层端承摩擦桩桩承式加筋低路堤现场试验. 土木工程与管理学报. 2023(06): 60-69 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 23
出版历程
  • 收稿日期:  2018-09-10
  • 发布日期:  2019-06-24

目录

    /

    返回文章
    返回