• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

PSI技术应用于防波堤沉降监测研究

黄其欢, 王青青, 何宁, 王一安, 周彦章

黄其欢, 王青青, 何宁, 王一安, 周彦章. PSI技术应用于防波堤沉降监测研究[J]. 岩土工程学报, 2019, 41(4): 761-768. DOI: 10.11779/CJGE201904021
引用本文: 黄其欢, 王青青, 何宁, 王一安, 周彦章. PSI技术应用于防波堤沉降监测研究[J]. 岩土工程学报, 2019, 41(4): 761-768. DOI: 10.11779/CJGE201904021
HUANG Qi-huan, WANG Qing-qing, HE Ning, WANG Yi-an, ZHOU Yan-zhang. Monitoring time-series settlements of breakwaters based on PSI[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 761-768. DOI: 10.11779/CJGE201904021
Citation: HUANG Qi-huan, WANG Qing-qing, HE Ning, WANG Yi-an, ZHOU Yan-zhang. Monitoring time-series settlements of breakwaters based on PSI[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 761-768. DOI: 10.11779/CJGE201904021

PSI技术应用于防波堤沉降监测研究  English Version

详细信息
    作者简介:

    黄其欢(1978– ),男,安徽舒城人,副教授,从事InSAR、地表沉降监测等方面的研究工作。E-mail:insar@hhu.edu.cn。

    通讯作者:

    何宁,E-mail:nhe@nhri.cn

  • 中图分类号: TU433

Monitoring time-series settlements of breakwaters based on PSI

  • 摘要: 防波堤工后稳定性监测是其安全运行的关键,需大量的实测数据进行分析评估,而水准测量和GPS等传统测量方法需耗费大量人力物力,且仅能提供稀疏的点状沉降数据。PSI技术通过雷达传感器和地面目标(如人工建筑物、道路和其它基础设施)之间距离变化信息,获取高密度目标点的雷达视线向形变值,转换得到垂直向位移(沉降量),适用于监测长期发生缓慢形变的区域。以某港区东防波堤(8 km)为例,对2016年9月29日至2017年12月29日共38景Sentinel-1A卫星C波段合成孔径雷达影像处理分析,提取788个均匀分布的稳定散射体点(PS点),并选取9个特征点分析其形变规律。结果表明,该防波堤累积沉降量达到336 mm,占堤高的0.8%,堤身安全稳定。最后将PSI监测结果与同期水准测量结果对比分析,可以发现二者具有一致性,能满足防波堤地表沉降的精度要求,表明PSI技术在同类线性工程沉降监测领域具有较大应用潜力。
    Abstract: The post-construction stability monitoring of breakwaters is one of the key tasks to their operation, and a large amount of measured data needs to be required for the stability and safety analysis. The traditional methods such as leveling and GPS are time consuming and labor-intensive, which only provide sparse points. The PSI technology can obtain the high-density target points and the line-of-sight (LOS) deformations through monitoring the distance changes between the radar sensor and the ground targets (such as artificial buildings, roads, and other infrastructures). PSI is suitable for monitoring the areas where long-term slow deformation occurs. Taking a breakwater (8 km) in Lianyungang as an example, a total of 38 C-band images of Sentinel-1A, from September 29, 2016 to December 29, 2017, are analyzed and 788 persistent scatterers (PS) are extracted. Nine feature points are selected to analyze the deformation pattern. The results show that the cumulative settlement of the breakwater reaches 336 mm, which accounts for 0.8% of the breakwater height, indicating that the dike is safe and stable. Finally, by comparing the PSI with the leveling during the same period, it can be found that the two monitoring results are consistent and can meet the accuracy requirements of the breakwater settlement monitoring, which performs the great potentiality in monitoring the settlement of linear engineering.
  • [1] 吴永强, 李炎保, 刘颖辉. 防波堤损坏研究进展及损坏原因浅析[J]. 港工技术, 2008(2): 8-11.
    (WU Yong-qiang, LI Yan-bao, LIU Ying-hui.Discussion on the research and reasons of breakwater failures[J]. Port Engineering Technology, 2008(2): 8-11. (in Chinese))
    [2] 连云港市地质灾害防治规划(2006-2020年)[Z].连云港市地质灾害防治规划(2006-2020年)[Z]. 连云港: 连云港市国土局, 2012.
    (Geological Disaster Prevention and Control Plan of Lianyungang[Z].Geological Disaster Prevention and Control Plan of Lianyungang[Z]. Lianyungang: Lianyungang Municipal Bureau of Land and Resources, 2012. (in Chinese))
    [3] 何宁, 沈雪松, 周彦章, 等. 大型疏浚土充填袋筑堤技术研究[J]. 岩土工程学报, 2015, 37(3): 440-445.
    (HE Ning, SHEN Xue-song, ZHOU Yan-zhang, et al.Embankment construction technology using large geotextile bags filled with dredged soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 440-445. (in Chinese))
    [4] HENNAU M, WULF A D, GOOSSENS R.Close range photogrammetry used for the monitoring of harbor breakwaters[J]. Photogrammetric Image Analysis, 2007, 36(3): 53-57.
    [5] 王立强, 王立军, 马津渤. GPS-RTK技术在防波堤施工水下地形测量中的应用分析[J]. 港工技术, 2010, 47(5): 58-60.
    (WANG Li-qiang, WANG Li-jun, MA Jin-bo.Analysis on application of GPS-RTK technique in underwater topographical survey for construction of breakwater[J]. Port Engineering Technology, 2010, 47(5): 58-60. (in Chinese))
    [6] 王腾, DANIELE P, FABIO R, 等. 基于时间序列SAR影像分析方法的三峡大坝稳定性监测[J]. 中国科学: 地球科学, 2011, 41(1): 110-123.
    (WANG Teng, DANIELE P, FABIO R, et al.Stability monitoring of the Three Gorges Dam based on time series SAR image analysis[J]. Science China: Earth Sciences, 2011, 41(1): 110-123. (in Chinese))
    [7] FERRETTI A, PRATI C, ROCCA F.Permanent scatterers in SAR interferometry[J]. IEEE Trans Geos Remote Sens, 2001, 39(1): 8-20.
    [8] ZHOU W, LI S, ZHOU Z.Remote sensing of deformation of a high concrete-faced rockfill dam using InSAR: a study of the Shuibuya Dam, China[J]. Remote Sensing, 2016, 8(3): 255.
    [9] ZHOU W, LI S, ZHOU Z.InSAR observation and numerical modeling of the earth-dam displacement of Shuibuya Dam (China)[J]. Remote Sensing, 2016, 8(10): 877.
    [10] HUANG Q, CROSETTO M, MONSERRAT O.Displacement monitoring and modelling of a high-speed railway bridge using C-band Sentinel-1 data[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2017, 128: 204-211.
    [11] HUANG Q, CROSETTO M, MONSERRAT O, et al. Monitoring and evaluation of a long-span raiway bridge using Sentinel-1 data[J]. ISPRSA Photogramm Remote Sens Spatial Inf Sci, 2017, IV-2/W4: 457-463.
    [12] WANG H Y, CHANG L, MARKINE V L.Structural health monitoring of railway transition zones using satellite radar data[J]. Sensors, 2018, 18(2): 413.
    [13] HANSSEN R F, FREEK J V L, Monitoring water defense structures using radar interferometry[C]// Proceedings of the 2008 IEEE Radar Conference, Rome, Italy, 26-30 May 2008: 1-4.
    [14] HANSSEN R F, FREEK J V L. One-dimensional Radar Interferometry for Line Infrastructure[C]// Geoscience & Remote Sensing Symposium. IEEE, Delft, 2009.
    [15] CHANG L, DOLLEVOET R P B J, HANSSEN R F. Monitoring line-infrastructure with multisensor SAR interferometry: products and performance assessment metrics[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(5): 1593-1605.
    [16] WASOWSKI J, BOVENGA F, NUTRICATO R, et al.High resolution satellite multi-temporal interferometry for monitoring infrastructure instability hazards[J]. Innovative Infrastructure Solutions, 2017, 27: 1-9.
    [17] 陶芸, 郝社峰. 连云港南部沿海地区地面沉降驱动因素研究[J]. 安全与环境工程, 2014, 21(6): 53-59.
    (TAO Yun, HAO She-feng.Driving factors of surface subsidence in southern coastal area of Lianyungang City[J]. Safety and Environmental Engineering, 2014, 21(6): 53-59. (in Chinese))
    [18] RABUS B, FINEDER M, ROTH A, BAMLER R.The shuttle radar topography mission-a new class of digital elevation models acquired by spaceborne radar[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2003, 57(4): 241-262.
    [19] CROSETTO M, MONSERRAT O, CUEVAS M, et al.Spaceborne differential SAR interferometry: data analysis tools for deformation measurement[J]. Remote Sens, 2016, 3(12): 305-318.
    [20] ROSSI C, EINEDER M.High-resolution InSAR building layovers detection and exploitation[J]. Geoscience & Remote Sensing IEEE, 2015, 53(12): 6457-6468.
    [21] PROS F, GONZALEZ L S, MARTINEZ B J.Breakwater settlement monitoring with InSAR data[C]// Geoscience & Remote Sensing Symposium. Canada, 2014.
  • 期刊类型引用(14)

    1. 肖天驰,王建平,李玟,顾琳琳,张效晗,杨晓宁,王振,方斌. 深水防波堤软土地基变形稳定性监测研究. 城市道桥与防洪. 2025(03): 147-153 . 百度学术
    2. 马刚,艾志涛,郭承乾,李少林,陈华,周伟. 高土石坝变形监测研究进展. 水利学报. 2024(10): 1174-1186 . 百度学术
    3. 王启贵,韩其婷,毛永生. 星载SAR干涉技术软基工程沉降监测与建模分析. 工程勘察. 2023(05): 65-69 . 百度学术
    4. 马爽,栾明珠. 软土地基上重力式防波堤动力稳定性及长期变形特性研究. 中国新技术新产品. 2023(07): 110-112 . 百度学术
    5. 高建东,王勇,安江雷,姜俊狄. 一种多源地面沉降监测数据融合方法及其应用. 测绘通报. 2023(10): 158-162+172 . 百度学术
    6. 肖家耀. InSAR技术及其在海上平台形变监测中的应用现状. 科技视界. 2022(12): 46-48 . 百度学术
    7. 贺利敏. 基于传递函数的建筑物沉降监测线性回归分析. 山东农业大学学报(自然科学版). 2021(01): 120-123 . 百度学术
    8. 陈少青,陈文强,程林,包胜利. 基于卷积神经网络的抛石防波堤沉降预测. 天津建设科技. 2021(05): 4-6 . 百度学术
    9. 范雪婷,潘九宝. 连云港防波堤时序InSAR沉降监测研究. 地理空间信息. 2021(10): 55-59+150 . 百度学术
    10. 王茂枚,王刘宇,蔡军,朱昊,方波. 合成孔径雷达干涉测量技术在水利工程形变监测应用方面的研究进展. 江苏水利. 2021(S2): 66-71 . 百度学术
    11. 许小龙,占鑫杰,杨守华,朱群峰,周彦章,黄宙晟. 淤泥质海岸防波堤工程地基监测研究. 河南科学. 2020(01): 89-95 . 百度学术
    12. 郭超,张秀勇. 山东东营港北区防波堤水平位移分析. 港工技术. 2020(04): 46-50 . 百度学术
    13. 许欣,马森,杜磊,张立业. 抛石防波堤沉降影响因素的敏感度分析. 水道港口. 2020(04): 410-419 . 百度学术
    14. 何毅,王文辉,闫浩文,张立峰. 贝鲁特港口大爆炸InSAR形变追溯与建筑受损评估. 海洋测绘. 2020(06): 53-56 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  321
  • HTML全文浏览量:  6
  • PDF下载量:  209
  • 被引次数: 16
出版历程
  • 收稿日期:  2018-05-06
  • 发布日期:  2019-04-24

目录

    /

    返回文章
    返回