• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

低温环境下南海海底泥流的流变试验及模型

郭兴森, 年廷凯, 范宁, 焦厚滨, 贾永刚

郭兴森, 年廷凯, 范宁, 焦厚滨, 贾永刚. 低温环境下南海海底泥流的流变试验及模型[J]. 岩土工程学报, 2019, 41(1): 161-167. DOI: 10.11779/CJGE201901018
引用本文: 郭兴森, 年廷凯, 范宁, 焦厚滨, 贾永刚. 低温环境下南海海底泥流的流变试验及模型[J]. 岩土工程学报, 2019, 41(1): 161-167. DOI: 10.11779/CJGE201901018
GUO Xing-sen, NIAN Ting-kai, FAN Ning, JIAO Hou-bin, JIA Yong-gang. Rheological tests and model for submarine mud flows in South China Sea under low temperatures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 161-167. DOI: 10.11779/CJGE201901018
Citation: GUO Xing-sen, NIAN Ting-kai, FAN Ning, JIAO Hou-bin, JIA Yong-gang. Rheological tests and model for submarine mud flows in South China Sea under low temperatures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 161-167. DOI: 10.11779/CJGE201901018

低温环境下南海海底泥流的流变试验及模型  English Version

基金项目: 国家重点研发计划项目(2016YFE0200100,2018YFC0309203);国家自然科学基金项目(51879036,41427803);深部岩土力学与地下工程国家重点实验室基金项目(SKLGDUEK1307);山东省海洋环境地质工程重点实验室基金项目(MEGE1603)
详细信息
    作者简介:

    郭兴森(1994- ),男,博士研究生,主要从事海洋土力学与海底滑坡等方面的研究工作。E-mail: gxs@mail.dlut.edu.cn。

    通讯作者:

    年廷凯,E-mail:tknian@dlut.edu.cn

  • 中图分类号: TU411

Rheological tests and model for submarine mud flows in South China Sea under low temperatures

  • 摘要: 海底泥流是海底斜坡失稳后演化的流态化滑坡体,常对海洋工程设施造成严重破坏,而目前针对这种泥流的流变特性研究较少,特别是考虑海底低温环境。基于南海北部陆坡软黏土原状样制备泥流,采用RST流变仪开展具有不同温度与含水率的泥流流变试验,引入Herschel-Bulkley模型对流变参数进行深入探讨,建立考虑低温效应与含水率变化的海底泥流综合流变模型。进一步,通过相态转化、布朗运动与粒际作用的理论,解释并分析了海底泥流的流变特征及其变化机理。研究表明:与常温条件相比,低温环境下泥流的剪应力与表观黏度显著提高,且随着剪切速率的增加差距变大,平均变化量可超过35%。这一成果可为海底泥流运动过程数值模拟与海底滑坡灾害预测提供科学依据。
    Abstract: The submarine mud flow, a fluidized landslide mass developed from the unstable submarine slope, is easy to cause a serious damage to the offshore engineering facilities. At present, there are rarely researches to discuss the rheological properties of this mud flow, particularly lacking of its characteristic studies considering the low temperatures around the seafloor. For this purpose, the mud flow is prepared by using undisturbed soft clay samped from the South China Sea, and many rheological tests under different temperatures and water contents are conducted by the RST rheometer. Then, the Herschel-Bulkley model is introduced to analyze the rheological parameters, and the integrated rheological model for the submarine mud flow is proposed. Further, the rheological characteristics and mechanisms of the submarine mud flow are analyzed by the phase transformation, the Brownian motion and the interparticle interaction. The research results show that the shear stress and apparent viscosity of the mud flow under the low temperatures significantly increase as compared with those under the room temperature, and this change percentage will further rise with the increase of the shear strain rate, and the average value of the change is more than 35%. This study may provide a scientific basis for the numerical simulation of submarine mud flows and the prediction of landslide hazards.
  • [1] MOSHER D C, MOSCARDELLI L, SHIPP R C, et al.Submarine mass movements and their consequences[J]. Advances in Natural & Technological Hazards Research, 2010, 41(3): 1-12.
    [2] 王立忠, 缪成章. 慢速滑动泥流对海底管道的作用力研究[J]. 岩土工程学报, 2008, 30(7): 982-987.
    (WANG Li-zhong, MIAO Cheng-zhang.Pressure on submarine pipelines under slowly sliding mud flows[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(7): 982-987. (in Chinese))
    [3] CANALS M, LASTRAS G, URGELES R, et al.Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data: case studies from the COSTA project[J]. Marine Geology, 2004, 213(1): 9-72.
    [4] 胡光海, 刘忠臣, 孙永福, 等. 海底斜坡土体失稳的研究进展[J]. 海岸工程, 2004, 23(1): 63-72.
    (HU Guang-hai, LIU Zhong-chen, SUN Yong-fu, et al.Advances in the research on sediment failure on submarine slope[J]. Coastal Engineering, 2004, 23(1): 63-72. (in Chinese))
    [5] 叶国良, 郭述军, 朱耀庭. 超软土的工程性质分析[J]. 中国港湾建设, 2010(5): 1-9.
    (YE Guo-liang, GUO Shu-jun, ZHU Yao-ting.Analysis of engineering properties of super soft soil[J]. China Harbor Construction, 2010(5): 1-9. (in Chinese))
    [6] BOUKPETI N, WHITE D J, RANDOLPH M F, et al.Strength of fine-grained soils at the solid-fluid transition[J]. Géotechnique, 2012, 62(3): 213-226.
    [7] BERLAMONT J, OCKENDEN M, TOORMAN E, et al.The characterisation of cohesive sediment properties[J]. Coastal Engineering, 1993, 21(1/2/3): 105-128.
    [8] COUSSOT P, PIAU J M.On the behavior of fine mud suspensions[J]. Rheologica Acta, 1994, 33(3): 175-184.
    [9] 王裕宜, 詹钱登, 严璧玉. 泥石流体的流变特性与运移特征[M]. 长沙: 湖南科学技术出版社, 2014.
    (WANG Yu-yi, ZHAN Qian-deng, YAN Bi-yu.Debris-flow rheology and movement[M]. Changsha: Hunan Science and Technology Press, 2014. (in Chinese))
    [10] SI G.Experimental study of the rheology of fine-grained slurries and some numerical simulations of downslope slurry movements[D]. Oslo: University of Oslo, 2007.
    [11] ZAKERI A, HØEG K, NADIM F. Submarine debris flow impact on pipelines part I: experimental investigation[J]. Coastal Engineering, 2008, 55(12): 1209-1218.
    [12] 李亚敏, 罗贤虎, 徐行, 等. 南海北部陆坡深水区的海底原位热流测量[J]. 地球物理学报, 2010, 53(9): 2161-2170.
    (LI Ya-min, LUO Xian-hu, XU Xing, et al.Seafloor in-situ heat flow measurements in the deep-water area of the northern South China Sea[J]. Chinese Journal of Geophysics, 2010, 53(9): 2161-2170. (in Chinese))
    [13] 邹大鹏, 卢博, 阎贫, 等. 南海北部海底沉积物在温度变化下的三种声速类型[J]. 地球物理学报, 2012, 55(3): 1017-1024.
    (ZOU Da-peng, LU Bo, YAN Pin, et al.Three types of sound velocity of seafloor sediments in the northern South China Sea under temperature variations[J]. Acta phys Sinica, 2012, 55(3): 1017-1024. (in Chinese))
    [14] BARNES H A, NGUYEN Q D.Rotating vane rheometry: a review[J]. Journal of Non-Newtonian Fluid Mechanics, 2001, 98(1): 1-14.
    [15] SANTOLO A S D, PELLEGRINO A M, EVANGELISTA A. Experimental study on the rheological behaviour of debris flow[J]. Natural Hazards & Earth System Science, 2010, 10(12): 2507-2514.
    [16] 鲁双, 范宁, 年廷凯, 等. 基于流变仪测试超软土强度的试验方法[J]. 岩土工程学报, 2017, 39(增刊1): 91-95.
    (LU Shuang, FAN Ning, NIAN Ting-kai, et al.Test method for testing strength of super soft soil based on rheometer[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 91-95. (in Chinese))
    [17] BOUKPETI N, WHITE D J, RANDOLPH M F.Analytical modelling of the steady flow of a submarine slide and consequent loading on a pipeline[J]. Géotechnique, 2012, 62(2): 137-146.
    [18] 寇养琦. 南海北部大陆边缘海底滑坡的初步研究[J]. 南海地质研究, 1993(5): 43-56.
    (KOU Yang-qi.Preliminary study on submarine landslide from northern continental of South China sea[J]. Geological Research of South China Sea, 1993(5): 43-56. (in Chinese))
    [19] EINSELE G.Deep-reaching liquefaction potential of marine slope sediments as a prerequisite for gravity mass flows? (Results from the DSDP)[J]. Marine Geology, 1990, 91(4): 267-279.
    [20] 李宏伟, 王立忠, 国振, 等. 海底泥流冲击悬跨管道拖曳力系数分析[J]. 海洋工程, 2015, 33(6): 10-19.
    (LI Hong-wei, WANG Li-zhong, GUO Zhen, et al.Drag force of submarine landslides mudflow impacting on a suspended pipeline[J]. Ocean Engineering, 2015, 33(6): 10-19. (in Chinese))
    [21] 杨闻宇. 剪切载荷作用下高浓度黏性泥沙流变特性的实验研究[D]. 上海: 上海交通大学, 2014.
    (YANG Wen-yu.Experimental study on rheological behavior of high viscosity cohesive sediment under shear load[D]. Shanghai: Shanghai Jiao Tong University, 2014. (in Chinese))
    [22] 王裕宜, 詹钱登, 韩文亮, 等. 黏性泥石流体的应力应变特性和流速参数的确定[J]. 中国地质灾害与防治学报, 2003, 14(1): 9-13.
    (WANG Yu-yi, ZHAN Qian-deng, HAN Wen-liang, et al.Viscous debris flow stress strain characteristics and velocity parameters of geological disasters and prevention of[J]. China Sinica, 2003, 14(1): 9-13. (in Chinese))
    [23] DAVISON J M, CLARY S, SAASEN A, et al.Rheology of various drilling fluid systems under deepwater drilling conditions and the importance of accurate predictions of downhole fluid hydraulics[C]// SPE Annual Technical Conference and Exhibition. SPE, 1999.
    [24] 费祥俊, 康志成. 细颗粒浆体、泥石流浆体对泥石流运动的作用[J]. 山地学报, 1991, 9(3): 143-152.
    (FEI Xiang-jun, KANG Zhi-cheng.Effects of fine-grained slurry and debris flow on debris flow movement[J]. Journal of the Mountain, 1991, 9(3): 143-152. (in Chinese))
    [25] MAJOR J J, PIERSON T C.Debris flow rheology: Experimental analysis of fine-grained slurries[J]. Water Resources Research, 1992, 28(3): 841-857.
    [26] 陈育民, 高星, 刘汉龙. 砂土液化流动变形的简化方法[J]. 岩土力学, 2013, 34(6): 1567-1573.
    (CHEN Yu-min, GAO Xing, LIU Han-long.Simplified method for flow deformation of sand liquefaction[J]. Rock and Soil Mechanics, 2013, 34(6): 1567-1573. (in Chinese))
计量
  • 文章访问数:  302
  • HTML全文浏览量:  10
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-15
  • 发布日期:  2019-01-24

目录

    /

    返回文章
    返回