• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

聚丙烯纤维加筋砂土的剪胀特性

孔玉侠, 沈飞凡, 王慧娟

孔玉侠, 沈飞凡, 王慧娟. 聚丙烯纤维加筋砂土的剪胀特性[J]. 岩土工程学报, 2018, 40(12): 2249-2256. DOI: 10.11779/CJGE201812012
引用本文: 孔玉侠, 沈飞凡, 王慧娟. 聚丙烯纤维加筋砂土的剪胀特性[J]. 岩土工程学报, 2018, 40(12): 2249-2256. DOI: 10.11779/CJGE201812012
KONG Yu-xia, SHENG Fei-fan, WANG Hui-juan. Stress-dilatancy properties for fiber-reinforced sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2249-2256. DOI: 10.11779/CJGE201812012
Citation: KONG Yu-xia, SHENG Fei-fan, WANG Hui-juan. Stress-dilatancy properties for fiber-reinforced sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2249-2256. DOI: 10.11779/CJGE201812012

聚丙烯纤维加筋砂土的剪胀特性  English Version

基金项目: 国家自然科学基金项目(11402109); 江苏省自然科学基金项目(BK20130909)
详细信息
    作者简介:

    孔玉侠(1981- ),女,工学博士,主要从事土的本构关系及其数值计算方面的研究工作。E-mail:kongyuxia@njtech.edu.cn。

  • 中图分类号: TU43

Stress-dilatancy properties for fiber-reinforced sand

  • 摘要: 随机分布的聚丙烯纤维在土体中彼此交错形成网状,可显著提高砂土的抗剪强度,减少其峰值强度折减。描述土体剪胀规律的剪胀方程是建立纤维加筋土的本构模型的核心。以聚丙烯纤维加筋南京细砂为主要研究对象,通过不同围压下的常规三轴压缩试验,研究了不同纤维质量百分比含量对南京细砂强度、变形以及剪胀特性的影响。对比聚丙烯纤维加筋砂土与纯砂土的应力应变关系和强度特性,分解出聚丙烯纤维对砂土的内在约束应力。将外力克服剪胀阻力需要做的额外功分解为由土颗粒运动和纤维变形两部分所消耗的能量,利用纤维对土的内在约束应力表示与加筋纤维有关的耗散能,基于最小比能原理建立了聚丙烯纤维加筋砂土的剪胀方程,揭示了聚丙烯纤维加筋砂土的特殊剪胀特性。经过对比发现常规三轴压缩试验结果与模型结果具有良好的一致性。
    Abstract: It is observed that randomly distributed polypropylene fibers act to interlock particles and thus improve the mechanical behavior of the reinforced soils. The polypropylene fiber inclusion clearly increases the shear strength of soils, and reduces the loss of post-peak strength. The stress-dilatancy relationship can be employed as the foundation to develop a constitutive model for polypropylene fiber-reinforced (PFR) soils. In this study, a number of conventional triaxial compression tests are carried out to investigate the effect of randomly distributed fiber reinforcements on the stress-dilatancy relationship of Nanjing sand. A new parameter, σFR, representing the reinforcing effect of fibers in Mohr-circle space is introduced to describe the behaviors of PFR sand. When a polypropylene fiber-soil assembly dilates in response to the applied shear deformations, the work done by the driving stress will be dissipated by the particle sliding and the fiber deformation. The work dissipated by the polypropylene fiber deformation can be expressed by introducing σFR. Based on the minimum rate of internal work assumption, the stress-dilatancy relationship is deduced for fiber-reinforced sand. It is shown that the predicted results are in good agreement with the experimental ones.
  • [1] WALDRON L J.Shear resistance of root-permeated homogeneous and stratified soil[C]// Soil Science Society of America Proceedings. 1977, 41: 843-849.
    [2] PARK T, TAN A S.Enhanced performance of reinforced soil walls by the inclusion of short fiber[J]. Geotext Geomembr, 2005, 23(4): 348-361.
    [3] 施斌, 唐朝生, 蔡奕. 聚丙烯纤维加筋土工程性质分析[J]. 工程地质学报, 2006(增刊1): 320-325.
    (SHI Bin, TANG Chao-sheng, CAI Yi, et al.Analysis of engineering properties of polypropylene reinforced soil[J]. Journal of Engineering Geology, 2006(S1): 320-325. (in Chinese))
    [4] BHARDWAJ K, MANDAL N.Study on polypropylene fiber reinforced fly ash slopes[C]// 12th Int conf of int assoc for comp meth and advan in geomech (IACMAG). Goa, 2008.
    [5] JIANG H, CAI Y, LIU J.Engineering properties of soils reinforced by short discrete polypropylene fiber[J]. J Mater Civ Eng, 2010, 22(12): 1315-1322.
    [6] GRAY H, AL-REFEAI T.Behavior of fabric versus fiber reinforced sand[J]. J Geotech Engrg ASCE, 1986, 112(8): 804-820.
    [7] CONSOLI N C, HEINECK K S, CASAGRANDE M D T, et al. Shear strength behavior of fiber-reinforced sand considering triaxial tests under distinct stress paths[J]. J Geotech Geoenviron Eng, 2007, 133(11): 1466-1469.
    [8] MICHALOWSKI R L.Limit analysis with anisotropic fiber-reinforced soil[J]. Géotechnique, 2008, 58(6): 489-501.
    [9] CONSOLI N C, CASAGRANDE M D T, COOP M R. Performance of fibre-reinforced sand at large shear strains[J]. Géotechnique, 2007, 57(9): 751-756.
    [10] SANTOS S D, CONSOLI N C, BAUDET B A.The mechanics of fibre-reinforced sand[J]. Géotechnique, 2010, 61(10): 791-799.
    [11] MICHALOWSKI R L, ZHAO A.Failure of fiber-reinforced granular soils[J]. J Geotech Engrg, 1996, 122(3): 226-234.
    [12] MICHALOWSKI R L, CERMAK J.Triaxial compression of sand reinforced with fibers[J]. J Geotech Geoenviron Eng, 2003, 129(2): 125-136.
    [13] MICHALOWSKI R L.Limit analysis with anisotropic fiber- reinforced soil[J]. Géotechnique, 2008, 58(6): 489-501.
    [14] ZORNBERG J G.Discrete framework for limit equilibrium analysis of fiber-reinforced soil[J]. Géotechnique, 2002, 52(8): 593-604.
    [15] LI C.Mechanical response of fiber-reinforced soil[D]. Austin: Univ of Texas, 2005.
    [16] NAJJAR S, SADEK S. ALCOVERO A.Quantification of model uncertainty in shear strength predictions for fiber-reinforced sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(1): 116-133.
    [17] REYNOLDS O. On the dilatancy of media composed of rigid particles in contact with experimental illustrations[J]. Philosophical Magazine, 1885, 20(5): 469-481.
    [18] 张建民. 砂土的可逆性和不可逆性剪胀规律[J]. 岩土工程学报, 2000, 22(1): 12-17.
    (ZHANG Jian-min.A constitutive model for evaluating small to large cyclic strains of saturated sand during liquefaction process[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 546-552. (in Chinese))
    [19] 罗汀, 高智伟, 万征, 等. 土剪胀性的应力路径相关规律及其模拟[J]. 力学学报, 2010, 42(1): 93-101.
    (LUO Ding, GAO Zhi-wei, WAN Zheng, et al.Influence of the stress path on dilatancy of soils and its modeling[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(1): 93-101. (in Chinese))
    [20] 姚仰平, 张丙印, 朱俊高. 土的基本特性、本构关系及数值模拟研究综述[J]. 土木工程学报. 2012, 45(3): 127-150.
    (YAO Yang-ping, ZHANG Bing-yin, ZHU Jun-gao.Behaviors, constitutive models and numerical simulation of soils[J]. China Civil Engineering Journal, 2012, 45(3): 127-150. (in Chinese))
    [21] ROWE P W.The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[C]// Proceedings of the Royal Society of London, Series A. 1962, 269: 500-527.
    [22] 包承纲, 丁金华. 纤维加筋土的研究和工程应用[J]. 土工基础, 2012, 26(1): 80-83.
    (BAO Cheng-gang, DING Jin-hua.Researches and applications of fiber reinforced soils[J]. Soil Engineering and Foundation, 2012, 26(1): 80-83. (in Chinese))
    [23] KAUR A, KUMAR A.Bearing capacity of eccentrically- obliquely loaded footings resting on fiber-reinforced sand[J]. Geotechnical and Geological Engineering, 2014, 32(1): 151-166.
    [24] MAHER M H, HO Y C.Mechanical properties of kaolinite/fiber soil composite[J]. J Geotech Engrg, 1994, 120(8): 1381-1393.
    [25] 李广信, 陈轮, 郑继勤, 等. 纤维加筋黏性土的试验研究[J]. 水利学报, 1995(6): 31-36.
    (LI Guang-xin, CHEN Lun, ZHENG Ji-Qin.Experimental study on fiber-reinforced cohesive soil[J]. Journal of Hydraulic Engineering, 1995(6): 31-36. (in Chinese))
    [26] ROSCOE K H, SCHOFIELD A N, THURAIRAJAH A.Yielding of clay in states wetter than critical[J]. Géotechnique, 1963, 13(3): 211-240.
    [27] ROSCOE K H, BURLAND J B.“On the generalized stress-strain behavior of “Wet” clay,” in Engineering Plasticity[M]. Cambridge: Cambridge University Press, 1968: 535-609.
    [28] NAKAI T.Isotropic hardening elastioplastic model for sand considering the stress path dependency in three-dimensional stresses[J]. Soils and Foundations, 1989, 29(1): 119-137
    [29] WOOD D Muir.Soil behaviour and critical state soil mechanics[M]. Cambridge: Cambridge University Press, 1990.
    [30] DIAMBRA A, IBRAIM E, WOOD D Muir, et al.Fibre reinforced sands: experiments and modeling[J]. Geotextoles and Geomembtanes, 2010, 28: 238-250.
  • 期刊类型引用(11)

    1. 乔木,朱忠喜,闫康凯. 钻井液堵漏材料研究及应用现状. 新疆石油天然气. 2025(01): 10-23 . 百度学术
    2. 马兴业,杨秀娟,樊恒辉,汤朝鑫,石庆红,孟敏强. 木钙+玄武岩纤维对黄土边坡力学性能及抗蚀性的影响. 人民黄河. 2023(11): 122-127 . 百度学术
    3. 张向东,李文亮,庞帅,张雪峰. 纤维加筋水泥风积砂三轴压缩试验研究. 辽宁工程技术大学学报(自然科学版). 2023(05): 572-578 . 百度学术
    4. 熊雨,邓华锋,彭萌,齐豫,李涛. 四种人工合成纤维加筋黄土的抗剪特性. 长江科学院院报. 2022(01): 122-126+133 . 百度学术
    5. 仇安兵. 废弃纤维改良水泥固化土力学特性及破坏模式研究. 岩土工程技术. 2022(01): 79-86 . 百度学术
    6. 王志兵,刘金明,顾翔. 纤维和纳米材料改良花岗岩残积土的力学试验及机理研究. 水资源与水工程学报. 2022(04): 185-191 . 百度学术
    7. 王梓,刘瑾,马晓凡,兰小威,梅绪哲,祁长青. 聚氨酯聚合物/剑麻纤维改良砂土剪切特性研究. 矿产勘查. 2021(06): 1455-1461 . 百度学术
    8. 孙自立. 玻璃纤维含量对加筋砂土边坡稳定性的影响研究. 四川水泥. 2020(08): 57-58 . 百度学术
    9. 卢召红,刘薇,闫锋. 不同含水率的冻结中性砂土静力学表征分析. 低温建筑技术. 2020(09): 85-87+92 . 百度学术
    10. 邓可,王恺,刘冶球,杨毅,黄梅欢,肖晓华. 纤维改性土壤的研究现状与进展. 广东化工. 2019(13): 112-113 . 百度学术
    11. 钟汉林,刘春辉,张俊,曲淑英. 随机分布剑麻纤维对砂土力学特性的影响. 烟台大学学报(自然科学与工程版). 2019(04): 391-396 . 百度学术

    其他类型引用(16)

计量
  • 文章访问数:  306
  • HTML全文浏览量:  7
  • PDF下载量:  202
  • 被引次数: 27
出版历程
  • 收稿日期:  2017-09-03
  • 发布日期:  2018-12-24

目录

    /

    返回文章
    返回