• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

截排减压抗浮系统在抗浮事故处理中的应用

朱东风, 曹洪, 骆冠勇, 潘泓, 梅锦玲

朱东风, 曹洪, 骆冠勇, 潘泓, 梅锦玲. 截排减压抗浮系统在抗浮事故处理中的应用[J]. 岩土工程学报, 2018, 40(9): 1746-1752. DOI: 10.11779/CJGE201809023
引用本文: 朱东风, 曹洪, 骆冠勇, 潘泓, 梅锦玲. 截排减压抗浮系统在抗浮事故处理中的应用[J]. 岩土工程学报, 2018, 40(9): 1746-1752. DOI: 10.11779/CJGE201809023
ZHU Dong-feng, CAO Hong, LUO Guan-yong, PAN Hong, MEI Jin-ling. Application of interception and drainage anti-floating system in treatment of uplift accidents[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1746-1752. DOI: 10.11779/CJGE201809023
Citation: ZHU Dong-feng, CAO Hong, LUO Guan-yong, PAN Hong, MEI Jin-ling. Application of interception and drainage anti-floating system in treatment of uplift accidents[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1746-1752. DOI: 10.11779/CJGE201809023

截排减压抗浮系统在抗浮事故处理中的应用  English Version

基金项目: 岩土力学与工程国家重点实验室资助课题(Z015013); 华南理工大学亚热带建筑科学国家重点实验室自主研究课题(2015ZC16); 广东省省级科技计划项目; 广东省自然科学基金项目(2018A030313383)
详细信息
    作者简介:

    朱东风(1984- ),男,博士研究生,主要从事渗流及岩土工程方面的研究工作。E-mail: dongfengzhu@163.com。

    通讯作者:

    骆冠勇,E-mail:luogy@scut.edu.cn

  • 中图分类号: TU433

Application of interception and drainage anti-floating system in treatment of uplift accidents

  • 摘要: 对出现上浮事故的地下结构进行处理过程十分复杂,因为重新施工桩或锚杆需要大面积破坏底板,而盲目排水减压则可能对周边环境产生影响。截排减压抗浮系统是对该类事故进行处理的良好方式。其理念在于,利用基坑周边止水帷幕形成相对封闭的地下水环境,拦截外部大部分流量,同时利用底板上的减压井排水,并辅以观测及自动控制措施,实现自流自排。排水构筑物采用大直径减压井,降低了井周水力坡降,消除了产生淤堵的水力条件,同时方便后期的清理维护。减压井为预制无砂混凝土井环吊装而成,施工过程简单方便。该系统成功应用于地下车库的上浮事故处理,监测结果表明:流量及水头可控,且运行成本低廉。
    Abstract: It is very complicated to deal with the uplift accidents of underground structures, because the reconstruction of uplift piles or anchors will damage the wide range of bottom slabs, while draining water blindly to relieve pressure may have a bad impact on the environment. The interception and drainage anti-floating system is a good solution to deal with these uplift accidents. The concept of this system is to intercept and drain water by use of the cutoff wall around the underground structures to form a relatively closed seepage environment and several relief wells on the bottom slab. This system can discharge water automatically with the help of controlling and monitoring equipments. The hydraulic gradient around the relief well decreases dramatically due to the adoption of a large well diameter that offers convenience to the later cleaning and maintenance work, which eliminates the hydraulic condition of well clogging. The relief well consists of several prefabricated non-fines concrete well rings installed by crane, so the construction process is very simple. This system has been successfully applied to the treatment of the uplift accident of an underground garage. The monitoring results show that the flow rate and hydraulic head can be controlled, and the operating cost is low.
  • [1] 梅国雄, 宋林辉, 周峰, 等. 关于基础抗浮的若干问题探讨[J]. 岩土工程学报, 2008, 30(增刊1): 238-242.
    (MEI Guo-xiong, SONG Lin-hui, ZHOU Feng, et al.Discussions on several problems about anti-uplift of foundation[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(S1): 238-242. (in Chinese))
    [2] 张在明, 沈小克, 周宏磊, 等. 国家大剧院工程中的几个岩土工程问题[J]. 土木工程学报, 2009, 42(1): 60-65.
    (ZHANG Zai-ming, SHEN Xiao-ke, ZHOU Hong-lei, et al.Geotechnical aspects of the national centre for the performing arts[J]. China Civil Engineering Journal, 2009, 42(1): 60-65. (in Chinese))
    [3] Design, construction, and maintenance of relief wells[M]. US Army Corps of Engineers (USACE). Design, Construction, and Maintenance of relief wells[S]. Washington, D C: EM1110-2-1914 1992.
    [4] MANSUR C I, POSTOL G, SALLEY J R.Performance of relief well systems along Mississippi river levees[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(8): 727-738.
    [5] 张家发, 吴志广, 许季军, 等. 安庆江堤现有减压井运行效果初步分析[J]. 长江科学院院报, 2000, 17(4): 38-40.
    (ZHANG Jia-fa, WU Zhi-guang, XU Ji-jun, et al.Analyses on effectiveness of relief wells for Anqing Dyke[J]. Journal of Yangtze River Scientific Research Institute, 2000, 17(4): 38-40. (in Chinese))
    [6] VAN BEEK C G E M. Restoring well yield in the Netherlands[J]. Journal American Water Works Association, 1984, 76(10): 66-72.
    [7] 曹洪, 潘泓, 尹小玲, 等. 保利世界贸易中心地下水渗流及地下室抗浮分析[R]. 广州: 华南理工大学, 2007.
    (CAO Hong, PAN Hong, YIN Xiao-ling, et al.Basement anti-floating design and seepage anslysis for poly world trade centre[R]. Guangzhou: South China University of Technology, 2007. (in Chinese))
    [8] 曹洪, 潘泓, 骆冠勇. 地下结构截排减压抗浮概念及应用[J]. 岩石力学与工程学报, 2016, 35(12): 2542-2548.
    (CAO Hong, PAN Hong, LUO Guan-yong.A new anti-floatation method by drainage: concept and application[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(12): 2542-2548. (in Chinese))
    [9] 吴昌瑜, 张伟, 李思慎, 等. 减压井机械淤堵机制与防治方法实验研究[J]. 岩土力学, 2009, 30(10): 3181-3186.
    (WU Chang-yu, ZHANG Wei, LI Si-shen, et al.Research on mechanical clogging mechanism of relief well and its control method[J]. Rock and Soil Mechanics, 2009, 30(10): 3181-3186. (in Chinese))
    [10] 刘杰, 罗玉再. 高土石坝心墙裂缝的自愈机理与反滤层的防护作用[J]. 水利学报, 1987, 7(3): 20-29.
    (LIU Jie, LUO Yu-zai.The mechanism of crack healing in core and the protective functions of filters in high earth-rock dams[J]. Journal of Hydraulic Engineering, 1987, 7(3): 20-29. (in Chinese))
    [11] 毛昶熙. 渗流计算分析与控制[M]. 2版. 北京: 中国水利水电出版社, 2003.
    (MAO Chang-xi.Seepage computation analysis & control[M]. 2nd ed. Beijing: China Water & Power Press, 2003. (in Chinese))
    [12] 毛昶熙, 段祥宝, 吴良骥. 砂砾土各级颗粒的管涌临界坡降研究[J]. 岩土力学, 2009, 30(12): 3705-3709.
    (MAO Chang-xi, DUAN Xiang-bao, WU Liang-ji.Study of critical gradient of piping for various grain sizes in sandy gravels[J]. Rock and Soil Mechanics, 2009, 30(12): 3705-3709. (in Chinese))
    [13] 毛昶熙. 管涌与滤层的研究:管涌部分[J]. 岩土力学, 2005, 26(2): 209-215.
    (MAO Chang-xi.Study on piping and filters: piping[J]. Rock and Soil Mechanics, 2005, 26(2): 209-215. (in Chinese))
  • 期刊类型引用(16)

    1. 陈辉,周义. 地下室主动抗浮技术措施探讨及工程应用. 工程建设. 2025(04): 68-73 . 百度学术
    2. 黄俊光,李健斌,李伟科,张恒,李磊. 临江滨海强透水环境建筑工程载水减浮关键技术研究. 建筑结构. 2024(04): 41-49 . 百度学术
    3. 黄鹏,魏旭,陈林,梁树,彭小桐. 主动抗浮技术在新建建筑场地应用——以天府国际健康服务中心为例. 四川建筑. 2024(03): 194-197 . 百度学术
    4. 彭学忠,黄俊光,李磊. 科研范式指导下工程抗浮技术研究的创新途径. 城市建筑. 2024(23): 191-194 . 百度学术
    5. 肖隆辉. 基于排水减压技术的地下室抗浮方案分析. 四川水泥. 2024(12): 118-120 . 百度学术
    6. 陈良,张力,梁树. 弱透水场地地下建筑抗浮失效原因分析及治理措施. 建筑安全. 2023(01): 31-33+38 . 百度学术
    7. 林拥军,张曾鹏,方言,余国菲. 基于承压-潜水耦合运动的坡地地下室底板抗浮水头计算方法. 建筑技术. 2023(06): 757-763 . 百度学术
    8. 高晓峰,任东兴,邓安,罗东林. 某坡地建筑物地下室抗浮失效原因分析及治理措施研究. 建筑结构. 2022(06): 131-137+103 . 百度学术
    9. 罗益斌,陈继彬,王媛媛,沈攀. 膨胀土地区地下结构抗浮失效机理及主动抗浮措施应用. 水文地质工程地质. 2022(06): 64-73 . 百度学术
    10. 赵景业,赵留香,沈细中,刘社教,司舒阳. 高地下水位渠道无砂混凝土垫层流固耦合分析. 人民黄河. 2021(08): 130-134 . 百度学术
    11. 朱东风,曹洪,骆冠勇,潘泓,罗赤宇. 截排减压抗浮多井系统简化计算及设计方法. 岩土工程学报. 2021(11): 1986-1993 . 本站查看
    12. 袁广坤. 武汉二七商务区地下水动态模拟及最高水位预测. 重庆大学学报. 2020(09): 109-117 . 百度学术
    13. 骆冠勇,马铭骏,曹洪,潘泓. 临江地下结构主被动联合抗浮方法及应用. 岩土力学. 2020(11): 3730-3739 . 百度学术
    14. 高怀玉. 地下室结构抗浮设计优化研究. 建筑技术. 2020(12): 1498-1500 . 百度学术
    15. 孙光林,王爱勤,边亚东,杨子胜,洪诚. 再生无砂混凝土抗压强度研究. 混凝土与水泥制品. 2019(07): 88-90 . 百度学术
    16. 曹洪,朱东风,范泽,骆冠勇,潘泓. 止水帷幕缝隙渗漏变化过程试验研究. 水利学报. 2019(06): 699-709 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数:  295
  • HTML全文浏览量:  7
  • PDF下载量:  159
  • 被引次数: 31
出版历程
  • 收稿日期:  2017-03-06
  • 发布日期:  2018-09-24

目录

    /

    返回文章
    返回