• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

砂土最大最小孔隙比测定及其影响因素分析

李珊珊, 李大勇, 高玉峰

李珊珊, 李大勇, 高玉峰. 砂土最大最小孔隙比测定及其影响因素分析[J]. 岩土工程学报, 2018, 40(3): 554-561. DOI: 10.11779/CJGE201803021
引用本文: 李珊珊, 李大勇, 高玉峰. 砂土最大最小孔隙比测定及其影响因素分析[J]. 岩土工程学报, 2018, 40(3): 554-561. DOI: 10.11779/CJGE201803021
LI Shan-shan, LI Da-yong, GAO Yu-feng. Determination of maximum and minimum void ratios of sands and their influence factors[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 554-561. DOI: 10.11779/CJGE201803021
Citation: LI Shan-shan, LI Da-yong, GAO Yu-feng. Determination of maximum and minimum void ratios of sands and their influence factors[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 554-561. DOI: 10.11779/CJGE201803021

砂土最大最小孔隙比测定及其影响因素分析  English Version

基金项目: 国家自然科学基金重点项目面上项目(51639002, 51379118); 山东科技大学科研创新团队项目(2015TDJH104)
详细信息
    作者简介:

    李珊珊(1989-),女,博士研究生,主要从事岩土工程理论与应用研究。E-mail:shanshan3709@163.com。

    通讯作者:

    李大勇,E-mail:ldy@fuz.edu.cn

Determination of maximum and minimum void ratios of sands and their influence factors

  • 摘要: 相对密实度是影响砂土力学性质的重要指标,密实的砂土呈现强度软化,松散的砂土却呈现强度硬化,而测定最大、最小孔隙比是计算相对密实度的前提。砂土的最小及最大孔隙比是通过直接测定的相应最大、最小干密度换算得到的,但目前常忽略了试验方法对其试验结果的影响,也忽略了黏粒含量对砂样密实度的影响。现取细、中、粗砂3种砂样,进行了干密度测试试验并测定了不同黏粒及黏粒掺量下砂样的最大、最小孔隙比。研究结果表明:采用量筒慢转法测量砂土最小干密度较为合理;采用振动锤击法测定砂土最大干密度时,建议细砂采用容积为250 mL击实筒,中、粗砂采用1000 mL击实筒;掺入粉粒、黏粒后砂样的最小孔隙比均随黏粒掺量(≤30%)增加而减小,且两者之间存在一定的线性关系;砂样最大孔隙比随粉粒、黏粒掺量增加逐渐减小,而随高岭土黏粒掺量增加呈缓慢增大趋势。
    Abstract: The mechanical behaviors of sand are heavily dependent on its relative density: the dense sand exhibits softening strength; on the contrary, the loose one displays hardening strength. Furthermore, the relative density is determined based on the maximum and minimum void ratios. The maximum and minimum void ratios are commonly obtained by using the maximum and minimum densities, ignoring the effects of test methods and clay contents in sand. The maximum and minimum void ratios are tested by considering three different sized groups of sands with various clay contents. It is shown that the minimum dry density can be attained in a measuring cylinder with low rotation speed. In addition, it is suggested that the maximum dry density of fine sands should be measured with the 250 mL compaction cylinder combining vibration with hit, while the 1000 mL compaction cylinder is suitable for medium and coarse sands. The results also show that the void ratio decreases with the increase in clay contents (less than 30%), while there is a linear relationship between the clay contents and the void ratio of sands. However, the maximum void ratio of sand decreases with increasing content of silty clay and clay, and increases with increasing content of kaolin clay.
  • [1] TAVENAS F, ROCHELLE P.Accuracy of relative density measurements[J]. Géotechnique, 1972, 22(4): 549-562.
    [2] DAS B, SOBHAN K.Principles of geotechnical engineering[M]. 7th ed. New York: Cengage Learning, 2010: 51-72.
    [3] GB/T 50123—1999 土工试验方法标准[S]. 1999.
    (GB/T50123—1999 Standard for soil test method[S]. 1999. (in Chinese))
    [4] HUMPRHES H W.A method for controlling compaction of granular materials[J]. Highway Research Board Bulletin, 1957, 159: 41-57.
    [5] 郭庆国, 刘贞草. 确定大径粒粗粒土最大密度的近似方法[J]. 西北水资源与水工程, 1992, 3(1): 12-21.
    (GUO Qing-guo, LIU Zhen-cao.Approximation of maximum density of coarse-grained soils[J]. Water Resources & Water Engineering, 1992, 3(1): 12-21. (in Chinese))
    [6] 李细荣. 基于激光图像土的压实度检测方法的研究[D]. 西安: 长安大学, 2013.
    (LI Xi-rong.Research on detection method of compaction degree based on laser image of soil[D]. Xi'an: Chang'an University, 2013. (in Chinese))
    [7] 邹峰. 基于数字图像处理技术的砂土干密度评价研究[D]. 镇江: 江苏科技大学, 2015.
    (ZOU Feng.Based on digital image processing technology of sandy soil compactness appraisal research[D]. Zhenjiang: Jiangsu University of Science and Technology, 2015. (in Chinese))
    [8] CUBRINOVSKI M, ISHIHARA K.Maximum and minimum void ratio characteristics of sand[J]. Japanese Geotechnical Society, 2002, 42(6): 65-78.
    [9] MUSZYNSKI M R.Determination of maximum and minimum density of poorly graded sands using a simplified method[J]. Geotechnical Testing Journal, 2006, 29(3): 263-272.
    [10] 范孟华, 邹正伟. 改进砂的相对密度试验方法的建议[J]. 路基工程, 2007(5): 67-68.
    (FAN Meng-hua, ZOU Zheng-wei.Suggestions on improving testing method for relative density of sand[J]. Subgrade Engineering, 2007(5): 67-68. (in Chinese))
    [11] 范孟华, 孔德志. 砂相对密度试验方法的改进[J]. 岩矿测试, 2007, 26(5): 428-430.
    ( FAN Meng-hua, KONG De-zhi.Improvement on method for relative density of sand experiments[J]. Rock & Mineral Analysis, 2007, 26(5): 67-68. (in Chinese))
    [12] DAS B, SOBHAN K.Principles of geotechnical engineering[M]. 8th ed. New York: Cengage Learning, 2014.
    [13] SAMARASINGHE M, HUANG Y, DRENEVICH P.Permeability and consolidation of normally consolidated soils[J]. Journal of the Geotechnical Engineering Division, ASCE, 1982, 108(6): 835-850.
    [14] YILMAZ Y.A study on the limit void ratio characteristics of medium to fine mixed graded sands[J]. Engineering Geology, 2009, 104(3): 290-294.
    [15] LADE P V, YANAMURO J A, LIGGIO G D.Effects of fines content on void ratio, compressibility, and static liquefaction of silty sand[J]. Geomechanics and Engineering, 2009, 1(1): 1-15.
    [16] CHANGA C S, WANGB J Y, GEB L.Modeling of minimum void ratio for sand-silt mixtures[J]. Engineering Geology, 2015, 196: 293-304.
    [17] CHANGA C S, WANGB J Y, GEB L.Maximum and minimum void ratios for sand-silt mixtures[J]. Engineering Geology, 2016, 211: 7-18.
    [18] YANG S, LACASSE S R.Determination of the transitional fines content of mixtures of sand and non-plastic fines[J]. Geotechnical Testing Journal, 2006, 29(2): 102-107.
    [19] DASH H K, SITHARAM T G, BAUDET B A.Influence of non-plastic fines on the response of a silty sand to cyclic loading[J]. Soils and Foundations, 2010, 50(5): 695-704.
    [20] ANTHI P, THEODORA T.The effect of fines on critical state and liquefaction resistance characteristics of non-plastic silty sands[J]. Soils and Foundations, 2008, 48(5): 713-725.
  • 期刊类型引用(14)

    1. 邹俊杰,尹志勇,彭蓬,吴沂洋,谭鹏强,高攀. 橡胶砂最小干密度测定及其经验公式. 建材技术与应用. 2024(03): 28-32 . 百度学术
    2. 孙小宸,宿利平,刘洋. 基于液化势指标的砂土抗液化评价方法及应用. 工程地质学报. 2023(02): 671-679 . 百度学术
    3. 施勇,贾献林,吕国儿,李宝建. 钙质砂最大最小孔隙比的确定及其影响因素分析. 地基处理. 2023(04): 293-298 . 百度学术
    4. 刘军,苗现国,许军龙,卓慧英,牛天娇. 砂土相对密度试验研究和探讨. 工程勘察. 2023(09): 26-34 . 百度学术
    5. 瞿茹,朱长歧,刘海峰,王天民,马成昊,王星. 珊瑚砂界限干密度确定方法的比较研究. 岩土力学. 2023(S1): 461-475 . 百度学术
    6. 李志鹏,糟凯龙,何建新,杨海华. 粉煤灰掺量对改良沙漠土毛细水上升规律的影响分析. 粉煤灰综合利用. 2022(01): 87-92 . 百度学术
    7. 李识博,代俊芳,吴江伟,肖乐乐. 考虑粒组分类影响的最小孔隙比分布及模型验证. 岩土力学. 2022(S2): 193-204 . 百度学术
    8. 戴仁辉,李明东,陈士军,易进翔,高玉峰. 不同粒度粗粒的极限孔隙比和破碎特征. 建筑材料学报. 2021(02): 427-431+439 . 百度学术
    9. 王明年,江勇涛,张艺腾,于丽,曾正强. 渗透侵蚀下砂性土细颗粒流失率预测方法. 地下空间与工程学报. 2021(06): 1704-1712 . 百度学术
    10. 刘勇,廖燕. 动荷载作用下砂土强度弱化的试验研究. 四川建筑科学研究. 2020(01): 65-70 . 百度学术
    11. 赵文丽. 黏粒含量对砂土抗剪强度影响的试验研讨. 建材与装饰. 2020(18): 203+205 . 百度学术
    12. 王明年,江勇涛,张艺腾,于丽,曾正强. 渗流作用下颗粒土起动临界坡降研究. 地下空间与工程学报. 2020(S1): 87-93 . 百度学术
    13. 吴加武. 挤密砂桩在直立式护岸抗液化处理中的应用. 土工基础. 2019(01): 27-30+34 . 百度学术
    14. 黎亮,杨晓松,李宏伟. 南疆绿洲区含残膜砂土击实特性试验研究. 公路. 2019(11): 199-203 . 百度学术

    其他类型引用(14)

计量
  • 文章访问数:  1061
  • HTML全文浏览量:  12
  • PDF下载量:  672
  • 被引次数: 28
出版历程
  • 收稿日期:  2016-10-31
  • 发布日期:  2018-03-24

目录

    /

    返回文章
    返回