• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

Von-Mises半无限空间结构安定理论研究

庄妍, 王孟, 王康宇

庄妍, 王孟, 王康宇. Von-Mises半无限空间结构安定理论研究[J]. 岩土工程学报, 2017, 39(z2): 232-235. DOI: 10.11779/CJGE2017S2056
引用本文: 庄妍, 王孟, 王康宇. Von-Mises半无限空间结构安定理论研究[J]. 岩土工程学报, 2017, 39(z2): 232-235. DOI: 10.11779/CJGE2017S2056
ZHUANG Yan, WANG Meng, WANG Kang-yu. The study of shakedown analysis for Von-Mises half-space[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 232-235. DOI: 10.11779/CJGE2017S2056
Citation: ZHUANG Yan, WANG Meng, WANG Kang-yu. The study of shakedown analysis for Von-Mises half-space[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 232-235. DOI: 10.11779/CJGE2017S2056

Von-Mises半无限空间结构安定理论研究  English Version

基金项目: 国家自然科学基金面上项目(51478166); “青蓝工程”资助项目; 教育部留学回国人员科研启动基金资助项目; 中央高校基本科研业务费专项资金资助项目(2015B17814,2015B25914)
详细信息
    作者简介:

    庄 妍(1982- ),女,江苏邳县人,教授,博士生导师,主要从事软土地基加固和路面安定性分析等方面的研究。E-mail: joanna_zhuang@163.com。

The study of shakedown analysis for Von-Mises half-space

  • 摘要: 进行了Hertz载荷作用下Von-Mises半无限空间的安定性研究。基于静力安定定理,通过寻找最佳残余应力场建立了平面应变条件下严格的安定极限解析方法。避免了以往安定分析方法的大型数学规划的困难,摆脱了计算中的维数障碍。研究结果表明:严格的安定极限值随着材料屈服应力的提高而增大,但随着摩擦系数的增大而减小;临界残余应力场全部位于两个界限以内,并且相交于临界点。当摩擦系数较小时,临界点发生在表面以下,随着摩擦系数逐渐增大到0.3,临界点从下层逐渐上移到表面。研究成果对安定理论应用于高速铁路设计具有参考意义。
    Abstract: This paper presents shakedown analysis of a half-space obeying Von-Mises criterion under Hertz loads in plane strain model. Based on the static shakedown theorem, a rigorous shakedown solution is established by searching for the best critical residual stress field. This method avoids the operation of mathematical programming in traditional method of shakedown analysis, and therefore obstruction since the large scale mathematical programming is overcome. It shows that both of the shakedown limit and rigorous shakedown limit increase with increasing the yield stress but decrease with the frictional coefficient. The critical residual stress fields all lie between two residual stress limits, which intersect beneath the surface for small value of μ, while tend to converge at the half-space surface when μ = 0.3, indicating that the failure mode of the material changes from subsurface failure to surface failure when increasing the frictional coefficient μ. This study has significance reference in application of shakedown analysis to the design of high-speed railway.
  • [1] KRABBENHØFT K, LYAMIN A V, SLOAN S W. Three-dimensional Mohr-Coulomb limit analysis using semidefinite programming[J]. Communications in Numerical Methods in Engineering, 2007, 23(9): 1107-1119.
    [2] 陈 钢, 杨 璞, 刘应华. 弹塑性结构安定性上限分析的数值方法及应用[J]. 工程力学, 2005, 22(1): 21-27. (CHEN Gang, YANG Pu, LIU Yin-hua. A computational approach to kinematic shakedown analysis of elastic-plastic structures and its applications[J]. Engineering Mechanics, 2005, 22(1): 21-27. (in Chinese))
    [3] LU M W, CHEN S Z. Stress function method in shakedown analysis of axisymmetric shell[J]. Acta Mechanica Solida Sinica, 1992, 5(1): 99-110.
    [4] COLLINS I F, WANG A P, SAUNDERS L R. Shakedown in layered pavements under moving surface loads[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 1993, 17(3): 165-174.
    [5] JOHNSON K L. A shakedown limit in rolling contact[C]// Proceedings of the Fourth US National Congress of Applied Mechanics. New York: American Society of Mechanical Engineers, 1962: 971-975.
    [6] SHARP R W, BOOKER J R. Shakedown of pavements under moving surface loads[J]. Journal of Transportation Engineering, ASCE, 1984, 110(1): 1-14.
    [7] 张明焕, 杨海元. 结构安定分析方法研究[J].应用力学学报, 1994, 11(4): 83-90. (ZHANG M H, YANG H Y. The study of shakedown analysis of structure[J]. Chinese Journal of Applied Mechanics, 1994, 11(4): 83-90. (in Chinese))
    [8] ZHAO J D, SLOAN S W, LYAMIN A V, et al. Bounds for shakedown of cohesive-frictional materials under moving surface loads[J]. International Journal of Solids and Structures, 2008, 45: 3290-3331.
    [9] NGUYEN A D, HACHEMI A, WEICHERT D. Application of the interior-point method to shakedown analysis of pavements[J]. International Journal for Numerical Methods in Engineering, 2008, 75: 414-439.
    [10] MELAN E. Zur plastizitat des raumlichen kontinuum[J]. Archive of Applied Mechanics, 1938, 9(2):116-126.
    [11] JOHNSON K L. Contact mechanics[M]. United Kingdom: Cambridge University Press, 1985.
    [12] YU H S, WANG J. Three-dimensional shakedown solutions for cohesive-frictional materials under moving surface loads[J]. International Journal of Solids and Structures, 2012, 49(26): 3797-3807.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-09
  • 发布日期:  2017-12-19

目录

    /

    返回文章
    返回