• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

有机质相压缩变形对泥炭土固结特性影响

方坤斌, 李卫超, 杨敏

方坤斌, 李卫超, 杨敏. 有机质相压缩变形对泥炭土固结特性影响[J]. 岩土工程学报, 2017, 39(z2): 194-197. DOI: 10.11779/CJGE2017S2047
引用本文: 方坤斌, 李卫超, 杨敏. 有机质相压缩变形对泥炭土固结特性影响[J]. 岩土工程学报, 2017, 39(z2): 194-197. DOI: 10.11779/CJGE2017S2047
FANG Kun-bin, LI Wei-chao, YANG Min. Effect of compression of organic matter on consolidation behavior of peaty soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 194-197. DOI: 10.11779/CJGE2017S2047
Citation: FANG Kun-bin, LI Wei-chao, YANG Min. Effect of compression of organic matter on consolidation behavior of peaty soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 194-197. DOI: 10.11779/CJGE2017S2047

有机质相压缩变形对泥炭土固结特性影响  English Version

基金项目: 国家自然科学基金项目(41572258)
详细信息
    作者简介:

    方坤斌(1992- ),男,硕士研究生,主要从事有机质软土工程特性的科研。E-mail: fang.kunbin@outlook.com。

    通讯作者:

    李卫超,E-mail:WeichaoLi@tongji.edu.cn

Effect of compression of organic matter on consolidation behavior of peaty soil

  • 摘要: 含有机质组分是泥炭土区别于矿质软土的重要特征,有机质含量直接影响了泥炭土的物理性质,进而影响了泥炭土的固结特性。基于国内外学者的研究,统计了大量泥炭土物理性质指标,分析了有机质含量与密度、含水率、土粒比重线性相关关系,并结合特殊土粒比重和平均土粒比重概念推导泥炭土特殊四相模型中液相孔隙比、有机质“孔隙比”表达式。在此基础上,考虑有机质相可压缩变形对泥炭土固结特性的影响,将有机质压缩变形模型与Terzaghi一维固结理论耦合,通过模型计算结果与室内试验数据进行对比分析,进一步验证了该模型的可行性。
    Abstract: The organic matter is an important symbol of peaty soil which is different from soft clay. The content of organic matter directly affects the physiochemical properties of peaty soil, and further affects its consolidation characteristics. Based on the researches of domestic and foreign scholars, the linear correlations between the content of organic matter with density, water content and specific gravity are analyzed. The void ratio of water and organic matter in the special four-phase model for peaty soil is deduced by combining the specific gravity of the inorganic solid phase with the mean specific gravity of the solid phase. Furthermore, by considering the effect of compression of organic matter on the consolidation characteristics of peaty soil, the compressive deformation model for organic matter is coupled with Terzaghi's one-dimensional consolidation theory, and the feasibility of the model is verified by comparing the calculated results with the experimental data.
  • [1] ZAINORABIDIN A, BAKAR I. Engineering properties of in-situ and modified hemic peat soil in Western Johor[C]// Proc of 2nd International Conference on Advances in Soft Soil Engineering and Technology, 2003: 173-182.
    [2] 余志华. 高原湖相泥炭土固结压缩及卸荷回弹变形试验研究[D]. 昆明: 昆明理工大学, 2015. (YU Zhi-Hua. Experimental study on consolidation and unloading rebound deformation of the plateau lacustrine peaty soil[D]. Kunming: Kunming University of Science and Technology, 2015. (in Chinese))
    [3] MEYER Z. Consolidation model for organic soils[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 1997, 1(4): 239-248.
    [4] 刘 侃, 杨 敏. 泥炭土的概念模型和一维固结理论分析[J]. 水利学报, 2015, 46(增刊1): 225-230. (LIU Kan, YANG Min, et al. A conceptual model and one-dimensional consolidation theory for peat[J]. Journal of Hydraulic Engineering, 2015, 46(S1): 225-230. (in Chinese))
    [5] DHOWIAN A W, EDIL T B. Consolidation behavior of peats[J]. Geotechnical Testing Journal, 1980, 3(3): 105-114.
    [6] NG S Y, EISCHENS G R. Repeated short-term consolidation of peats[M]//Testing of Peats and Organic Soils. ASTM International, 1983.
    [7] EDIL T B, MOCHTAR N E. Prediction of peat settlement[C]// Sedimentation Consolidation Models—Predictions and Validation. ASCE, 1984: 411-424.
    [8] JONES D B, BEASLEY D H, POLLOCK D J. Ground treatment by surcharging on deposits of soft clays and peat[C]// Proc Conf on Building on Marginal and Derelict Land. Glasgow, Scotland: ICE, 1986: 679-695.
    [9] YAMAGUCHI H. Physico-chemical and mechanical properties of peats and peaty ground[C]// Proc 6th Int Congress Int Assoc Engineering Geology. Amsterdam: Balkema, 1990: 521-526.
    [10] TERMAAT R J, TOPOLNICKI M. Biaxial tests with natural and artificial peat[C]// International Workshop on Advances in Understanding and Modeling the Mechanical Behaviour of Peat. Delft, 1993.
    [11] GUNARATNE M, STINNETTE P, MULLINS A G, et al. Compressibility relations for peat and organic soil[J]. Journal of Testing and Evaluation, 1998, 26(1): 1-9.
    [12] 熊恩来. 云南泥炭、泥炭质土的力学特性及本构模型研究[D]. 昆明: 昆明理工大学, 2005. (XIONG En-lai. Research on physical properties and relationship between strain and stress of peat & peaty soil in Yunan[D]. Kunming: Kunming University of Science and Technology, 2005. (in Chinese))
    [13] O'KELLY B C. Development of a large consolidometer- permeameter apparatus for testing soft soils[M]// GeoCongress 2008: Characterization, Monitoring, and Modeling of GeoSystems. 2008: 60-67.
    [14] SANTAGATA M, BOBET A, JOHNSTON C T, et al. One-dimensional compression behavior of a soil with high organic matter content[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(1): 1-13.
    [15] KAZEMIAN S, ASADI A, HUAT B B K. Laboratory study on geotechnical properties of tropical peat soils[J]. Int J Geotech Environ (January), 2009(1): 69-79.
    [16] KAZEMIAN S, PRASAD A, HUAT B B K, et al. A state of art review of peat: Geotechnical engineering perspective[J]. International Journal of Physical Sciences, 2011, 6(8): 1974-1981.
    [17] 吕 岩. 吉林省东部地区沼泽草炭土的结构特性及模型研究[D]. 长春: 吉林大学, 2012. (LÜ Yan. Study on the structural characteristics and model of marsh turfy soil in the east of Jilin province[D]. Changchun: Jilin University, 2012. (in Chinese))
    [18] MESRI G, AJLOUNI M. Engineering properties of fibrous peats[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(7): 850-866.
    [19] MADASCHI A, GAJO A. One-dimensional response of peaty soils subjected to a wide range of oedometric conditions[J]. Géotechnique, 2015, 65(4): 274-286.
    [20] LIU K, XUE J, YANG M. Deformation behaviour of geotechnical materials with gas bubbles and time dependent compressible organic matter[J]. Engineering Geology, 2016(213): 98-106.
    [21] YANG Z X, ZHAO C F, XU C J, et al. Modelling the engineering behaviour of fibrous peat formed due to rapid anthropogenic terrestrialization in Hangzhou, China[J]. Engineering Geology, 2016(215): 25-35.
  • 期刊类型引用(3)

    1. 周宁希,陈健,田宁,黄珏皓. 考虑颗粒形状的模拟月壤力学特性离散元研究. 华中科技大学学报(自然科学版). 2024(08): 113-120 . 百度学术
    2. 潘鹏志,王兆丰,封雨捷,李雨芯. 深空探测任务中岩土力学若干问题及研究进展. 岩土力学. 2024(11): 3153-3172 . 百度学术
    3. Bo Liu,Peng Sun,Wei Yao,Tao Li,Wei Xu. Research progress on the adaptability of lunar regolith simulant-based composites and lunar base construction methods. International Journal of Mining Science and Technology. 2024(10): 1341-1363 . 必应学术

    其他类型引用(3)

计量
  • 文章访问数:  355
  • HTML全文浏览量:  4
  • PDF下载量:  177
  • 被引次数: 6
出版历程
  • 收稿日期:  2017-08-01
  • 发布日期:  2017-12-19

目录

    /

    返回文章
    返回