• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑时效性的静压桩荷载-沉降关系预测方法

李林, 李镜培, 孙德安, 张凌翔

李林, 李镜培, 孙德安, 张凌翔. 考虑时效性的静压桩荷载-沉降关系预测方法[J]. 岩土工程学报, 2017, 39(12): 2327-2334. DOI: 10.11779/CJGE201712023
引用本文: 李林, 李镜培, 孙德安, 张凌翔. 考虑时效性的静压桩荷载-沉降关系预测方法[J]. 岩土工程学报, 2017, 39(12): 2327-2334. DOI: 10.11779/CJGE201712023
LI Lin, LI Jing-pei, SUN De-an, ZHANG Ling-xiang. Prediction method for time-dependent load-settlement relationship of a jacked pile[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2327-2334. DOI: 10.11779/CJGE201712023
Citation: LI Lin, LI Jing-pei, SUN De-an, ZHANG Ling-xiang. Prediction method for time-dependent load-settlement relationship of a jacked pile[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2327-2334. DOI: 10.11779/CJGE201712023

考虑时效性的静压桩荷载-沉降关系预测方法  English Version

基金项目: 国家自然科学基金项目(41272288)
详细信息
    作者简介:

    李 林(1986- ),男,甘肃通渭人,博士,主要从事桩基承载力方面的研究工作。E-mail: lilin_sanmao@163.com。

    通讯作者:

    李镜培,E-mail:lijp2773@tongji.edu.cn

  • 中图分类号: TU473

Prediction method for time-dependent load-settlement relationship of a jacked pile

  • 摘要: 考虑天然饱和黏土地层的原位力学特性,采用圆孔扩张模型考虑沉桩效应,结合太沙基一维径向固结理论推导了桩周土再固结过程中土体强度和剪切模量的解析解。在此基础上,根据桩基加载过程中桩侧土体的剪切变形特性,采用指数函数型荷载传递曲线分别建立了静压桩的桩侧和桩端荷载传递模型,提出了考虑时效性的静压桩荷载-沉降关系理论预测方法。通过现场试验对本文解答进行验证,研究了沉桩结束后静压桩荷载-沉降特性随时间的变化规律,分析了静压桩沉桩后不同历时的荷载传递特性。研究结果表明,沉桩结束后静压桩承载特性的变化主要是由于桩侧承载特性的提高;特定休止期后的静载试验结果与静压桩真实承载特性存在一定差异。因此,实际工程中应根据桩周土体力学特性的改变结合静载试验合理确定静压桩的承载特性。
    Abstract: Considering the in-situ properties of the natural saturated clay strata, the pile installation effects are studied by the cavity expansion model. Based on Terzaghi’s one dimensional radial consolidation theory, the analytical solutions are derived for the time-dependent strength and shear modulus of the soil adjacent to a jacked pile. Then, based on the shear deformation performance of the surrounding soil during pile loading, the time-dependent load transfer models for pile shaft and pile base are established through the exponential function type load transfer curve, respectively, and a theoretical method is proposed for predicting the time-dependent load-settlement curve of a jacked pile in saturated clay strata. The proposed theoretical method is verified by the field tests. The time-dependent load-settlement performance and load transfer properties of the jacked pile after pile installation are studied. The results show that the evolution of the bearing performance of the jacked pile after pile installation is primarily because of the increase in the bearing performance of pile shaft. There are some discrepancies between the actual load-settlement performance of the jacked pile and the static loading test results after specific rest time. Thus, in actual engineering, the time-dependent bearing performance of jacked piles should be evaluated through the static loading tests with the aid of considering the evolution of the mechanical properties of the surrounding soil of piles.
  • [1] BASU P, PREZZI M, SALGAGO R, et al. Shaft resistance and setup factors for pile jacked in clay[J]. Journal of Geotechnical and Geoenviromental Engineering, 2014, 140(3): 1-16.
    [2] ABU-FARSAKH M, ROSTI F, SOURI A. Evaluating pile installation and the following thixotropic and consolidation setup by numerical simulation for full scale pile load tests[J]. Canadian Geotechnical Journal, 2015, 52(11): 1734-1746.
    [3] SKOV R, DENVER H. Time dependence of bearing capacity of piles[C]// Proceedings of 3rd International Conference on the Application of Stress-wave Theory to Piles. Ottawa, 1988: 879-888.
    [4] TAN S L, CUTHBERTSON J K, ROBERT E. Prediction of pile set-up in non-cohesive soils[J]. Journal of Geotechnical Engineering, 2004, 120(1): 50-65.
    [5] 李 雄, 刘金砺. 饱和软土中预制桩承载力时效的研究[J]. 岩土工程学报, 1992, 14(4): 9-16. (LI Xiong, LIU Jin-li. Time effect on the bearing capacity of precast pile in saturated clay[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(4): 9-16. (in Chinese))
    [6] 张明义, 刘俊伟, 于秀霞. 饱和软黏土地基静压管桩承力时间效应试验研究[J]. 岩土力学, 2009, 30(10): 3005-3008. (ZHANG Ming-yi, LIU Jun-wei, YU Xiu-xia. Field test study of time effect on ultimate bearing capacity of jacked pipe pile in soft clay[J]. Rock and Soil Mechanics, 2009, 30(10): 3005-3008. (in Chinese))
    [7] JGJ 106—2014 建筑基桩检测技术规范[S]. 2014. (JGJ 106—2014 Technical code for testing of building foundation piles[S]. 2014. (in Chinese)
    [8] 夏建中, 罗战友, 张矢舟. 软黏土中压桩承载力的时效性分析与预测[J]. 岩土力学, 2006, 27(增刊): 793-796. (XIA Jian-zhong, LUO Zhan-you, ZHANG Shi-Zhou. Time effect analyses and prediction of ultimate bearing capacity of jacked pile in clay[J]. Rock and Soil Mechanics, 2006, 27(S0): 793-796. (in Chinese))
    [9] RANDOLPH M F. Science and empiricism in pile foundation design[J]. Géotechnique, 2003, 53(10): 847-875.
    [10] LI L, LI J P, SUN D A. Anisotropically elasto-plastic solution to undrained cylindrical cavity expansion in K 0 -consolidated clay[J]. Computers and Geotechnics, 2016, 73(1): 83-90.
    [11] RANDOLPH M F, WORTH C P. An analytical solution for the consolidation around a driven pile[J]. International Journal for Numerical and Analytical Methods in Geomechanics 1979, 3(3): 217-229.
    [12] WOOD D M. Soil behaviour and critical state soil mechanics[M]. Cambridge: Cambridge University Press, 1990.
    [13] RANDOLPH M F, WROTH C P. Application of the failure state in undrained simple shear to the shaft capacity of driven piles[J]. Géotechnique, 1981, 31(1): 143-157.
    [14] ZHANG Q Q, ZHANG Z M, HE J Y. A simplified approach for settlement analysis of single pile and pile groups considering interaction between identical piles in multilayered soils[J]. Computers and Geotechnics, 2010, 37(7): 969-976.
    [15] WANG Z J, XIE X Y, WANG J C. A new nonlinear method for vertical settlement prediction of a single pile and pile groups in layered soils[J]. Computers and Geotechnics, 2012, 45: 118-26.
    [16] MATSUOKA H, SUN D A, The SMP Concept-based 3D Constitutive Models for Geomaterials[M]. London: Taylor & Francis, 2006.
    [17] SHEIL B B, MCCABE B A. An analytical approach for the prediction of single pile and pile group behaviour in clay[J]. Computers and Geotechnics, 2016, 75: 145-158.
    [18] RANDOLPH M F, WROTH C P. An analysis of the vertical deformation of pile groups[J]. Géotechnique, 1979, 29(4): 423-439.
  • 期刊类型引用(14)

    1. 邹俊杰,尹志勇,彭蓬,吴沂洋,谭鹏强,高攀. 橡胶砂最小干密度测定及其经验公式. 建材技术与应用. 2024(03): 28-32 . 百度学术
    2. 孙小宸,宿利平,刘洋. 基于液化势指标的砂土抗液化评价方法及应用. 工程地质学报. 2023(02): 671-679 . 百度学术
    3. 施勇,贾献林,吕国儿,李宝建. 钙质砂最大最小孔隙比的确定及其影响因素分析. 地基处理. 2023(04): 293-298 . 百度学术
    4. 刘军,苗现国,许军龙,卓慧英,牛天娇. 砂土相对密度试验研究和探讨. 工程勘察. 2023(09): 26-34 . 百度学术
    5. 瞿茹,朱长歧,刘海峰,王天民,马成昊,王星. 珊瑚砂界限干密度确定方法的比较研究. 岩土力学. 2023(S1): 461-475 . 百度学术
    6. 李志鹏,糟凯龙,何建新,杨海华. 粉煤灰掺量对改良沙漠土毛细水上升规律的影响分析. 粉煤灰综合利用. 2022(01): 87-92 . 百度学术
    7. 李识博,代俊芳,吴江伟,肖乐乐. 考虑粒组分类影响的最小孔隙比分布及模型验证. 岩土力学. 2022(S2): 193-204 . 百度学术
    8. 戴仁辉,李明东,陈士军,易进翔,高玉峰. 不同粒度粗粒的极限孔隙比和破碎特征. 建筑材料学报. 2021(02): 427-431+439 . 百度学术
    9. 王明年,江勇涛,张艺腾,于丽,曾正强. 渗透侵蚀下砂性土细颗粒流失率预测方法. 地下空间与工程学报. 2021(06): 1704-1712 . 百度学术
    10. 刘勇,廖燕. 动荷载作用下砂土强度弱化的试验研究. 四川建筑科学研究. 2020(01): 65-70 . 百度学术
    11. 赵文丽. 黏粒含量对砂土抗剪强度影响的试验研讨. 建材与装饰. 2020(18): 203+205 . 百度学术
    12. 王明年,江勇涛,张艺腾,于丽,曾正强. 渗流作用下颗粒土起动临界坡降研究. 地下空间与工程学报. 2020(S1): 87-93 . 百度学术
    13. 吴加武. 挤密砂桩在直立式护岸抗液化处理中的应用. 土工基础. 2019(01): 27-30+34 . 百度学术
    14. 黎亮,杨晓松,李宏伟. 南疆绿洲区含残膜砂土击实特性试验研究. 公路. 2019(11): 199-203 . 百度学术

    其他类型引用(14)

计量
  • 文章访问数:  344
  • HTML全文浏览量:  5
  • PDF下载量:  289
  • 被引次数: 28
出版历程
  • 收稿日期:  2016-08-07
  • 发布日期:  2017-12-24

目录

    /

    返回文章
    返回