• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

酸碱环境干湿循环作用下砂岩抗剪强度劣化规律研究

刘新荣, 袁文, 傅晏, 王子娟, 朱乐文, 谢应坤

刘新荣, 袁文, 傅晏, 王子娟, 朱乐文, 谢应坤. 酸碱环境干湿循环作用下砂岩抗剪强度劣化规律研究[J]. 岩土工程学报, 2017, 39(12): 2320-2326. DOI: 10.11779/CJGE201712022
引用本文: 刘新荣, 袁文, 傅晏, 王子娟, 朱乐文, 谢应坤. 酸碱环境干湿循环作用下砂岩抗剪强度劣化规律研究[J]. 岩土工程学报, 2017, 39(12): 2320-2326. DOI: 10.11779/CJGE201712022
LIU Xin-rong, YUAN Wen, FU Yan, WANG Zi-juan, ZHU Le-wen, XIE Ying-kun. Deterioration rules of shear strength in sandstones under wetting and drying cycles in acid and alkali environment[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2320-2326. DOI: 10.11779/CJGE201712022
Citation: LIU Xin-rong, YUAN Wen, FU Yan, WANG Zi-juan, ZHU Le-wen, XIE Ying-kun. Deterioration rules of shear strength in sandstones under wetting and drying cycles in acid and alkali environment[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2320-2326. DOI: 10.11779/CJGE201712022

酸碱环境干湿循环作用下砂岩抗剪强度劣化规律研究  English Version

基金项目: 国家自然科学青年基金项目(51308567)
详细信息
    作者简介:

    刘新荣(1969- ),男,教授,博士生导师,主要从事岩土工程等方面的教学和科研。E-mail: liuxrong@126.com。

  • 中图分类号: TU43

Deterioration rules of shear strength in sandstones under wetting and drying cycles in acid and alkali environment

  • 摘要: 为研究酸碱环境中砂岩在干湿循环作用下抗剪强度的劣化规律,在浸泡溶液pH值分别为7,9,4的环境中,对砂岩试件进行次数为1,3,6,10次的干湿循环试验。通过不同循环次数后的单轴和三轴试验,计算得到每个阶段循环后砂岩的黏聚力和内摩擦角及其与干湿循环次数N的变化关系式,从而获得砂岩在不同pH值干湿循环作用下抗剪强度随循环次数的变化公式。结果表明,砂岩的抗剪强度随着循环次数的增加而降低,在干湿循环作用前期,受影响较为显著,抗剪强度降幅很大,而后,强度降幅相对较小;酸性环境下,砂岩抗剪强度劣化最为严重,碱性次之,中性最轻;干湿循环后的干燥试件抗剪强度劣化幅度远不如湿状态下的劣化幅度。
    Abstract: In order to study the deterioration rules of shear strength in sandstones under wetting and drying cycles, sandstone specimens are tested after 1, 3, 6, 10 wetting and drying cycles in the environment of pH=7, 9, 4. Through UCS and TCS after different cycles, the cohesion and internal friction angle of sandstone are calculated, and the relation formulae between them and number of cycles N are determined, respectively, thus the shear strength is obtained under wetting and drying cycles in acid and alkali environment. The results show that the shear strength of sandstone decreases with the increase of cycles. In the early stage of cycles, the deterioration effect is comparatively significant, and the deterioration of shear strength is very large, then, the strength deterioration is relatively small. In the acidic environment, the deterioration of shear strength in sandstones is the most serious, slightly reduced in the alkaline environment, and the neutral condition is the lightest. The deterioration of shear strength in dried samples is much lower than that of wet samples.
  • [1] GULSEREN D, EBRU A S, CANDAN G. Some non-linear models to predict the weathering degrees of a granitic rock from physical and mechanical parameters[J]. Expert Systems with Applications, 2011, 38: 7476-85.
    [2] TOBIAS S R, LINDA L, JESUS C, et al. Changes in porosity, permeability, water retention curve and reactive surface area during carbonate rock dissolution[J]. Chemical Geology, 2015, 403(18): 86-98.
    [3] POULSEN B A, SHEN B, WILLIAMS D J, et al. Strength reduction on saturation of coal and coal measures rocks with implications for coal pillar strength[J]. International Journal of Rock Mechanics & Mining Sciences 2014, 71: 41-52.
    [4] 崔 强, 冯夏庭, 薛 强, 等. 化学腐蚀下砂岩孔隙结构变化的机制研究[J]. 岩石力学与工程学报, 2008, 27(6): 1209-1216. (CUI Qiang, FENG Xia-ting, XUE Qiang, et al. Mechanism study of porosity structure change of sandstone under chemical corrosion[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1209-1216. (in Chinese))
    [5] 李 宁, 朱运明, 张 平, 等. 酸性环境中钙质胶结砂岩的化学损伤模型[J]. 岩土工程学报, 2003, 25(4): 395-399. (LI Ning, ZHU Yun-ming, ZHANG Ping, et al. A chemical damage model of sandstone in acid environment[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(4): 395-399. (in Chinese))
    [6] 汤连生, 王思敬. 岩石水化学损伤的机制及量化方法探讨[J]. 岩石力学与工程学报, 2002, 21(3): 314-319. (TANG Lian-sheng, WANG Si-jing. Analyses of mechanism and quantitative methods of chemical damage in water-rock interaction[J]. Chinese Journal of Rock Mechanic sand Engineering, 2002, 21(3): 314-319. (in Chinese))
    [7] 邓华锋, 原先凡. 饱水度对砂岩纵波波速及强度影响的试验研究[J]. 岩石力学与工程学报, 2013, 32(8): 1625-1631. (DENG Hua-feng, YUAN Xian-fan. Experimental research on influence of saturation degree of sandstone longitudinal wave velocity and strength[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1625-1631. (in Chinese))
    [8] 朱合华, 周治国, 邓 涛. 饱水对致密岩石声学参数影响的试验研究[J]. 岩石力学与工程学报, 2005, 24(5): 823-828. (ZHU He-hua, ZHOU Zhi-guo, DENG Tao. Acoustic parameters of low-porosity rock under dry and saturated conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(5): 823-828. (in Chinese))
    [9] 邓建华, 黄醒春, 彭结兵, 等. 膏溶角砾岩不同天然含水率情况下力学特性的试验研究[J]. 岩土工程学报, 2008, 30(8): 1203-1206. (DENG Jian-hua, HUANG Xing-chun. Mechanical properties of Gypsum Breccia with different water contents[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1203-1206. (in Chinese))
    [10] 熊德国, 赵忠明, 苏承东, 等. 饱水对煤系地层岩石力学性质影响的试验研究[J]. 岩石力学与工程学报, 2011, 30(5): 998-1006. (XIONG De-guo, ZHAO Zhong-ming, SU Cheng-dong, et al. Experimental study of effect of water-saturated state on mechanical properties of rock in coal measure strata[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(5): 998-1006. (in Chinese))
    [11] 刘新荣, 傅 晏, 王永新, 等. (库)水-岩作用下砂岩抗剪强度劣化规律的试验研究[J]. 岩土工程学报, 2008, 30(9): 1298-1302. (LIU Xin-rong, FU Yan, WANG Yong-xin, et al. Deterioration rules of shear strength of sand rock underwater-rock interaction of reservoir[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1298-1302. (in Chinese))
    [12] 刘新荣, 张 梁, 傅 晏. 酸性环境干湿循环对泥质砂岩力学特性影响的试验研究[J]. 岩土力学, 2014, 35(增刊2): 45-52. (LIU Xin-rong, ZHANG Liang, FU Yan. Experimental study of mechanical properties of argillaceous sandstone under wet and dry cycle in acid environment[J]. Rock and Soil Mechanics, 2014, 35(S2): 45-52. (in Chinese))
    [13] 刘新荣, 李栋梁, 张 梁, 等. 干湿循环对泥质砂岩力学特性及其微细观结构影响研究[J]. 岩土工程学报, 2016, 38(7): 1291-1300. (LIU Xin-rong, LI Dong-liang, ZHANG Liang, et al. Influence of wetting-drying cycles on mechanical properties and microstructure of shaly sandstone[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1291-1300. (in Chinese))
  • 期刊类型引用(17)

    1. 义扬,肖映雄,余科. 任意多边形骨料混凝土细观模型的建立与数值模拟. 山东大学学报(工学版). 2025(01): 97-107 . 百度学术
    2. 朱艳贵. 不等向固结时混合土剪切行为的离散元分析. 工业建筑. 2024(03): 167-173 . 百度学术
    3. 李冠鹏,陈占扬,李洪博,武海荣,黄鹏,刘子墨,杜文韬. 基于三维细观的混凝土靶板侵彻仿真研究. 河南城建学院学报. 2024(06): 48-55 . 百度学术
    4. 王泽华,李昺,邢磊,龚文平. 基于PFC~(3D)的滑坡与建筑物相互作用过程研究. 安全与环境工程. 2023(01): 107-118+191 . 百度学术
    5. 杨忠平,刘浩宇,李进,李绪勇,刘新荣. 土石混合料–基岩接触面剪切力学特性及剪切带变形特征研究. 岩石力学与工程学报. 2023(02): 292-306 . 百度学术
    6. 朱艳贵. 考虑粗颗粒真实形状的混合土不排水剪切特性离散元研究. 公路交通科技. 2023(02): 28-35 . 百度学术
    7. 茹晓军. 考虑细观特征的土石混合体边坡破坏机制分析. 铁道建筑技术. 2023(04): 1-4+10 . 百度学术
    8. 贾聿颉,李冬冬. 基于筛分试验的土石混合体三维数值建模方法研究. 华北水利水电大学学报(自然科学版). 2023(02): 97-103 . 百度学术
    9. 张宏虎,白伟,孙明祥,邓涛. 闽东地区含砾花岗岩残积土的细观剪切特性研究. 水利与建筑工程学报. 2022(02): 48-53+191 . 百度学术
    10. 吴尚杰. 粉土填料细观剪切特性的颗粒离散元数值模拟研究. 水利与建筑工程学报. 2022(03): 129-133+175 . 百度学术
    11. 李泽闯,刘志斌,程培峰,张昊,蔡启源. 基于颗粒流方法的含粗粒滑带土宏细观力学特性. 辽宁工程技术大学学报(自然科学版). 2022(02): 121-129 . 百度学术
    12. 胡峰,李志清,刘琪,胡瑞林. 土石混合体的剪应力波动和跌落行为机制. 水文地质工程地质. 2021(03): 90-101 . 百度学术
    13. 杨忠平,李进,蒋源文,胡元鑫,赵亚龙. 含石率对土石混合体–基岩界面剪切力学特性的影响. 岩土工程学报. 2021(08): 1443-1452 . 本站查看
    14. 金扬国. 交通荷载下碎石土回填路基沉降分析. 安徽建筑. 2021(11): 143-144 . 百度学术
    15. 杨忠平,蒋源文,李诗琪,李进,胡元鑫. 土石混合体—基岩界面剪切力学特性试验研究. 岩土工程学报. 2020(10): 1947-1954 . 本站查看
    16. 俞隽,孙洪浩,郑霄阳. 块石含量对土石混合体剪切力学特性的影响. 南通大学学报(自然科学版). 2020(03): 83-89 . 百度学术
    17. 董辉,朱宪明,陈立,罗正东,蒋秀姿. 基于阻抗谱的土石体电阻相似性孔隙特征研究. 仪器仪表学报. 2020(11): 119-128 . 百度学术

    其他类型引用(26)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 43
出版历程
  • 收稿日期:  2016-05-22
  • 发布日期:  2017-12-24

目录

    /

    返回文章
    返回