Experimental studies on mechanical behaviour of rock joints with varying matching degrees
-
摘要: 除粗糙度外,节理上、下面壁的接触状态是影响其剪切力学性质的重要因素。采用水泥砂浆制备若干不同形貌的节理,对其上、下面壁沿剪切方向错开不同的位移量、形成不同的接触状态以模拟不同偶合度的节理,在常法向应力条件下进行试验研究。试验结果表明:峰值剪切强度随错开位移量的增加而呈非线性减少,但错开位移对峰值剪切强度的影响随法向应力的增加而减弱;峰值剪切位移随错开位移量的增加逐步变大;剪切刚度随错开位移量的增加逐步减少直至某一恒定值,且在高法向应力下错开位移量对剪切刚度的影响更为明显。采用几种不同的简单函数分析峰值剪切强度与错开位移量之间的关系,在偶合节理峰值剪切强度准则的基础上提出不同接触状态节理的峰值剪切强度准则。与已有的准则相比,新准则采用的描述节理接触状态的参数易于确定且更为客观。Abstract: Besides surface roughness, the matching degree between the joint upper and lower blocks is another important factor affecting the shear behavior of a rough rock joint. A simplified way, by imposing varying magnitudes of horizontal dislocation along the shear direction between the joint upper and lower blocks, is used to model the different matching degrees of a joint that is made by cement. A large number of direct shear tests are then performed under constant normal stress condition to investigate the shear behavior of rock joints under the varying matching degrees. The experimental observations indicate that with the increase of dislocation, the peak shear strength decreases and has a larger reduction rate under the lower normal stress level. With the increasing dislocation, the peak shear displacement increases, and the shear stiffness decreases and gradually approaches a constant. The influence of dislocation on the shear stiffness is more prominent under a higher applied normal stress. Several simple combinations of roughness parameters and normalized dislocation are used to perform regression analysis, and a new empirical peak shear strength criterion is put forward to capture the peak shear strength degradation of rock joints under different matching degrees. A preliminary comparison between the proposed criterion and the existing criteria is also provided. The new parameters for the proposed criterion can be easily determined in the laboratory.
-
Keywords:
- rock mechanics /
- joint /
- direct shear test /
- shear behavior /
- peak shear strength criterion
-
[1] BARTON N, CHOUBEY V. The shear strength of rock joint in theory and practice[J]. Rock Mechanics, 1977, 10(1): 1-54. [2] PATTON F D. Multiple modes of shear failure in rock[C]// Proceedings of the 1st Congress of International Society for Rock Mechanics. Lisbon, 1966. [3] LADANYI B, ARCHAMBAULT G. Simulation of the shear behavior of a jointed rock mass[C]// Proceedings of the 11th US Symposium on Rock Mechanics (USRMS). Berkeley, 1969: 105-125. [4] KULATILAKE P H S W, SHOU G, HUANG T H, et al. New peak shear strength criteria for anisotropic rock joints[J]. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, 1995, 32(7): 673-697. [5] GRASSELLI G, EGGER P. Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters[J]. International Journal of Rock Mechanics and Mining Science, 2003, 40(1): 25-40. [6] XIA C C, TANG Z C, XIAO W M, et al. New peak shear strength criterion of rock joints based on quantified surface description[J]. Rock Mechanics and Rock Engineering, 47(2): 387-400. [7] 唐志成, 夏才初, 宋英龙, 等. Grasselli节理峰值抗剪强度公式再探[J]. 岩石力学与工程学报, 2012, 31(2): 356-364. (TANG Zhi-cheng, XIA Cai-chu, SONG Ying-long, et al. Discussion about Grasselli’s peak shear strength criterion for rock joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 356-364. (in Chinese)) [8] 杨 洁, 荣 冠, 程 龙, 等. 节理峰值抗剪强度试验研究[J]. 岩石力学与工程学报, 2015, 34(5): 884-894. (YANG Jie, RONG Guan, CHENG Long, et al. Experimental study of peak shear strength of rock joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(5): 884-894. (in Chinese)) [9] ZHAO J. Joint surface matching and shear strength part A: Joint matching coefficient (JMC) [J]. International Journal of Rock Mechanics and Mining Science, 1997, 34(2): 173-178. [10] ZHAO J. Joint surface matching and shear strength part B: JRC-JMC shear strength criterion[J]. International Journal of Rock Mechanics and Mining Science, 1997, 34(2): 179-185. [11] OH J, KIM GW. Effect of opening on the shear behavior of a rock joint[J]. Bulletin of Engineering Geology and the Environment, 2010, 69(3): 389-395. [12] BEER A J, STEAD D, COGGAN J S. Estimation of the joint roughness coefficient (JRC) by visual[J]. Rock Mech Rock Eng, 2002, 35(1): 65-74. [13] HONG E S, LEE J S, LEE I M. Underestimation of roughness in rough rock joints[J]. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, 2008, 32(11): 1385-1403. [14] TANG Z C. Mechanical behaviors of rock joint under different contact state and columnar jointed rock mass[D]. Shanghai: Tongji University, 2013. [15] TANG Z C, LIU Q S, XIA C C, et al. Mechanical model for predicting closure behavior of rock joints under normal stress[J]. Rock Mechanics and Rock Engineering, 2014, 47(6): 2287-2298. [16] GRASSELLI G, WIRTH J, EGGER P. Quantitative three- dimensional description of a rough surface and parameter evolution with shearing[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(6): 789-800. [17] TATONE B S A, GRASSELLI G. A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials[J]. Review Scientific Instrument, 2009, 80(12): 125110. -
期刊类型引用(11)
1. 李大勇,吴沁儒,张雨坤. 吸力基础沉贯及拔出可视化模型实验系统研发及应用. 实验技术与管理. 2025(01): 59-65 . 百度学术
2. 李大勇,黄凌昰,张雨坤,吴学震. 海上风电吸力基础在分层土中的沉贯特性研究综述. 海洋工程. 2023(01): 110-127 . 百度学术
3. 范夏玲. 海上风电吸力桩基础破坏包络面理论研究. 能源与环境. 2023(06): 60-62+110 . 百度学术
4. LI Da-yong,HOU Xin-yu,ZHANG Yu-kun,MA Shi-li,LI Shan-shan. Studies on Suction-Assisted Installation Behavior of Suction Caissons in Clay Under Various Undrained Shear Strengths. China Ocean Engineering. 2023(06): 989-999 . 必应学术
5. 张雨坤,秦廷辉,李大勇,王冲冲. 分层土中裙式吸力基础吸力沉贯特性模型试验研究. 岩土力学. 2022(05): 1317-1325 . 百度学术
6. 丁红岩,许云龙,张浦阳,乐丛欢. 复合筒型基础临界负压试验分析. 天津大学学报(自然科学与工程技术版). 2022(06): 603-610 . 百度学术
7. 马士力,谢立全. 循环荷载下粉土中吸力基础承载特性试验研究. 同济大学学报(自然科学版). 2022(10): 1443-1450+1530 . 百度学术
8. 李佳禧,张雨坤,李大勇. 砂土中裙式吸力基础注水拔出渗流规律数值模拟. 人民长江. 2022(11): 163-169 . 百度学术
9. HUANG Ling-xia,ZHANG Yu-kun,LI Da-yong. Experimental Studies on Extraction of Modified Suction Caisson(MSC) in Sand by Reverse Pumping Water. China Ocean Engineering. 2021(02): 272-280 . 必应学术
10. 秦源康,刘康,陈国明,张爱霞,朱敬宇,夏开朗. 海洋水合物地层导管吸力锚贯入安装负压窗口分析. 石油钻采工艺. 2021(06): 737-743 . 百度学术
11. 李逸凡,李大勇,张雨坤,高玉峰. 吸力基础沉贯过程中桶-土界面力学机理研究进展. 防灾减灾工程学报. 2020(05): 828-840 . 百度学术
其他类型引用(8)
计量
- 文章访问数: 420
- HTML全文浏览量: 8
- PDF下载量: 290
- 被引次数: 19