• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

软弱地层联络通道冻结法施工温度及位移场全程实测研究

杨平, 陈瑾, 张尚贵, 万朝栋

杨平, 陈瑾, 张尚贵, 万朝栋. 软弱地层联络通道冻结法施工温度及位移场全程实测研究[J]. 岩土工程学报, 2017, 39(12): 2226-2234. DOI: 10.11779/CJGE201712011
引用本文: 杨平, 陈瑾, 张尚贵, 万朝栋. 软弱地层联络通道冻结法施工温度及位移场全程实测研究[J]. 岩土工程学报, 2017, 39(12): 2226-2234. DOI: 10.11779/CJGE201712011
YANG Ping, CHEN Jin, ZHANG Shang-gui, WAN Chao-dong. Whole range monitoring for temperature and displacement fields of cross passage in soft soils by AGF[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2226-2234. DOI: 10.11779/CJGE201712011
Citation: YANG Ping, CHEN Jin, ZHANG Shang-gui, WAN Chao-dong. Whole range monitoring for temperature and displacement fields of cross passage in soft soils by AGF[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2226-2234. DOI: 10.11779/CJGE201712011

软弱地层联络通道冻结法施工温度及位移场全程实测研究  English Version

基金项目: 国家自然科学基金项目(51478226); 中铁18局科研项目
详细信息
    作者简介:

    杨 平(1964- ),男,教授,博士生导师,主要从事岩土与地下工程的教学与研究。E-mail: yangping@njfu.edu.cn。

  • 中图分类号: TU43

Whole range monitoring for temperature and displacement fields of cross passage in soft soils by AGF

  • 摘要: 研究软弱地层联络通道冻结法施工的冻结温度场、解冻温度场、冻胀融沉发展规律,是解决其冻胀及工后融沉预测与控制的前提。以软土隧道联络通道冻结法工程为背景,对冻结温度场、解冻温度场、地表变形、深层土体冻胀融沉及温度变化规律等进行了全程实测,对冻结壁的形成及解冻全过程进行了分析。结果表明:冻结过程温度变化规律可分为温度快速下降、降温减慢、降温速度加快、土体温度稳定、维护冻结等5个阶段。解冻期间,土体温度经历快速回升、0℃附近稳定、温度持续回升3个阶段。冻结圆柱交圈是产生迅速冻胀的临界时间点,冻胀主要发生在冻结18~45 d;联络通道解冻15 d,部分土体温度达到0℃附近,冻土进入相变阶段,因此应在15 d后开始融沉跟踪注浆;入土深度越大土体相变阶段持续时间越长,粉土融沉主要发生在解冻前2个月,其完全解冻需要100 d左右,此为跟踪注浆至少应持续时间。深部土体温度、冻胀融沉位移均随深度增大呈线性递增。实测拱顶冻结壁处最大冻胀及融沉位移分别是对应地表冻胀、融沉量的3.6倍、4.9倍。地表冻胀融沉槽为联络通道中线两侧符合拟正态分布规律,其影响范围约为隧道底部埋深的1.2倍。
    Abstract: Studying the temperature fields of freeze-thaw and development laws of frost heave and thaw settlement in the construction of cross passage in soft soils by artificial ground freezing method (AGF) is the premise to solve the problem of frost heave and thaw settlement. Taking the construction of cross passage in soft soils by AFG as the engineering background, the variation rules of freeze-thaw temperature, ground surface deformation, frost heave and thaw settlement of the deep soils are monitored during the whole range, then the variations of temperature and deformation of the frozen wall are analyzed. The results show that the process of freezing can be divided into five stages by temperature: rapid drop of temperature, slow drop of temperature, accelerated drop of temperature, temperature stability and freezing maintenance. But during the thawing period, the variation of soil temperature can be divided into three stages: rapid rise of temperature, temperature stability around 0℃ and sustainable rising. The frozen cylinder closed is the critical time to produce rapid frost heave, and frost heave mainly occurrs during 18 to 45 days after the start of freezing. After thawing for 15 days, the temperature of soils partly reaches that close to 0℃, then comes into the phase transformation stage. Therefore, in order to control the thaw settlement, tracing compensation grouting should be taken after 15 days from the starting of thawing. The soil phase transition process lasts longer as the soil is deeper. The thawing settlement of silt mainly occurs in the first two months since thawing, and it completely thaws for about 100 days. This is also the minimum time that should be continued for tracking compensation grouting. The temperature and displacement of frost heave and thaw settlement in deep soils increase linearly with the increasing depth. The maximum displacement of frost heave and thaw settlement at the dome of frozen wall are respectively 3.6 times and 4.9 times those of ground surface. The frost heave and thaw settlement slots of the ground surface are vertical to the center line of the cross passage, and both sides are in line with the normal distribution. The influence range is about 1.2 times the depth of the bottom of the tunnel.
  • [1] 胡向东, 赵 飞. 主隧道结构散热对联络通道冻结效果的影响[J]. 岩石力学与工程学报, 2009, 28(增刊1): 3109-3115. (HU Xiang-dong, ZHAO Fei. Influence of heat dissipation of main tunnel structure on freezing effect in cross passage construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S1): 3109-3115. (in Chinese))
    [2] 岳丰田, 仇培云, 杨国祥, 等. 复杂条件下隧道联络通道冻结施工设计与实践[J]. 岩土工程学报, 2006, 28(5): 660-663. (YUE Feng-tian, QIU Pei-yun, YANG Guo-xiang, et al. Design and practice of freezing method applied to connected aisle in tunnel under complex conditions[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 660-663. (in Chinese))
    [3] 覃 伟, 杨 平, 金 明, 等. 地铁超长联络通道人工冻结法应用与实测研究[J]. 地下空间与工程学报, 2010, 6(5): 1065-1071. (QIN Wei, YANG Ping, JIN Ming, et al. Application and survey analysis of freezing method applied to ultra-long connected aisle in metro tunnel[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(5): 1065-1071. (in Chinese))
    [4] 严 晗, 王天亮, 刘建坤. 粉砂土反复冻胀融沉特性试验研究[J]. 岩土力学, 2013, 34(11): 3159-3165. (YAN Han, WANG Tian-liang, LIU Jian-kun. Experimental study of repeated frost heave and thaw settlement properties of silty sand[J]. Rock and Soil Mechanics, 2013, 34(11): 3159-3165. (in Chinese))
    [5] 王效宾, 杨 平, 张 婷. 人工冻土融沉特性试验研究[J].南京林业大学学报(自然科学版), 2008, 32(4): 108-112. (WANG Xiao-bin, YANG Ping, ZHANG Ting. Study on thawsettlementbehaviorofartificialfreezing soil[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2008, 32(4): 108-112. (in Chinese))
    [6] 张海银. 人工冻结黏土冻胀特性试验研究[D]. 淮南: 安徽理工大学, 2013. (ZHANG Hai-yin. Experimental study on the frost heave characteristics of artificial freezing clay[D]. Huainan: Anhui University of Science and Technology, 2013. (in Chinese))
    [7] KLAS Hansson, LARS-CHRISTER Lundin. Water content reflectometer application to construction materials and its relation to time domain reflectometry[J]. Cold Regions Scienceand Technology, 2006, 44(1): 20-37.
    [8] MUTO Y, WATANABE K, ISHIZAKI T, et al. Microscopic observation of ice lensing and frost heaves inglassbeads. LewkowiczAGAllardM[C]// The 7th International Permafrost Conference. Quebec City, 1998: 783-87.
    [9] 吴海燕. 模拟冻融界面的冻土模型实验研究[D]. 成都: 西南交通大学, 2007. (WU Hai-yan. Experimental Study of frozen soil model with a simulative frost-thawing interface[D]. Chengdu: Southwest Jiaotong University, 2007. (in Chinese))
    [10] 程 桦, 姚直书, 张经双. 人工水平冻结法施工隧道冻胀与融沉效应模型试验研究[J]. 土木工程学报, 2007, 40(10): 80-85. (CHENG Hua, YAO Zhi-shu, ZHANG Jing-shuang, et al. A model test study on the effect of freeze heaving and thaw subsidence for tunnel construction with artificial horizontal ground freezing[J]. China Civil Engineering Journal, 2007, 40(10): 80-85. (in Chinese))
    [11] 胡向东, 任 辉, 陈 锦, 等. 管幕冻结法积极冻结方案模型试验研究[J]. 现代隧道技术, 2014, 51(5): 92-98. (HU Xiang-dong, REN Hui, CHEN Jin, et al. Model test study of the active freezing scheme for the combined Pipe-roof and freezing method[J]. Modern Tunnelling Technology, 2014, 51(5): 92-98. (in Chinese))
    [12] 袁云辉, 杨 平, 江天堑. 复杂环境下浅埋暗挖隧道穿越薄富含水层冻结温度场研究[J]. 岩土力学, 2010, 31(增刊1): 388-393. (YUAN Yun-hui, YANG Ping, JIANG Tian-qian. Study of thermal field of soil freezing in shallow covered tunnel with subsurface excavation passing through ground with thin aquifer under complex conduction[J]. Rock and Soil Mechanics, 2010, 31(S1): 388-393. (in Chinese))
    [13] YANG Ping, KE Jie-ming, WANG J G, et al. Numerical simulation of frost heave with coupled water freezing, Temperature and stress fields in tunnel excavation[J]. Computerts and Geotechnics, 2006, 33.
    [14] 武亚军, 杨 敏, 李大勇. 大连路隧道联络通道冻土帷幕数值分析[J]. 岩土力学, 2006, 27(3): 487-490. (WU Ya-jun, YANG Min, LI Da-yong. Numerical analysis of freezing soil curtain of tunnel connected aisle[J]. Rock and Soil Mechanics, 2006, 27(3): 487-490. (in Chinese))
    [15] 张志强, 何 川. 用冻结法修建地铁联络通道施工力学研究[J]. 岩石力学与工程学报, 2005, 24(18): 3211-3217. (ZHANG Zhi-qiang, HE Chuan. Study on construction of cross connection of shield tunnel and connecting aisle by freezing method[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(18): 3211-3217. (in Chinese))
    [16] 杨 平, 张 婷. 城市地下工程人工冻结法理论与实践[M]. 北京: 科学出版社, 2015: 32-38. (YANG Ping, ZHANG Ting. The theory and practice of artificial ground freezing in urban substructure work[M]. Beijing: Science Press, 2015: 32-38. (in Chinese))
    [17] PECK R B. Deep excavations and tunnelling in soft ground[C]// Proc 7th Int Conf on Soil Mech and Found Engrg. Mexico City, 1969: 225-229.
    [18] O’REILY M P, NEW B M. Settlements above tunnels in the United Kingdom: their magnitude and prediction[C]// Proc Tunnelling 82. London, 1982: 173-181.
  • 期刊类型引用(14)

    1. 王志强,杨广庆,蒲昌瑜,梁训美. 碳纤维土工格栅加筋沥青路面面层组合体抗车辙性能研究. 公路. 2025(04): 16-25 . 百度学术
    2. 刘鑫,刘刚,孙健,张莹晨,许淋颖,丁海军,沈宇鹏,张雪东. 铆接型聚酯土工格室加筋土单元压缩试验研究. 路基工程. 2025(02): 79-84 . 百度学术
    3. 孔永博,李浩,张建伟,李俊杰,杨晓华. 拼装式土工格室挡墙受力变形测试分析. 中外公路. 2024(02): 18-26 . 百度学术
    4. 方济升,刘杰,张耀辉,赵阳. 土工格室与沙漠沙界面特性大型直剪试验. 公路交通科技. 2024(06): 65-73 . 百度学术
    5. 李庆斌. 公路工程填方路基承载特性研究. 江西建材. 2024(09): 189-191 . 百度学术
    6. 戴维,罗旻,罗安军,祝俊华,周阳,胡敏,罗世清,罗建勋,熊华. 开孔土工格室条带拉伸力学性能研究. 江西建材. 2024(11): 278-282 . 百度学术
    7. 黄玉纯,吴廷楹,王宁,林志航,耿大新. 土工格室加筋对挡墙填方路基承载性的影响. 华东交通大学学报. 2023(01): 19-24 . 百度学术
    8. 杨晓华,李浩,赵旭,孔永博,曾浩,晏长根,许江波. 粉细砂填料柔性挡墙受力变形特性模型试验. 工程地质学报. 2023(02): 680-687 . 百度学术
    9. 杨晓华,李浩,曾浩,孔永博,晏长根. 粉细砂填料土工格室柔性挡墙工程性状研究. 中国公路学报. 2023(06): 24-35 . 百度学术
    10. 孙健,杨广庆,左政,梁训美,王奇伟. 熔接型聚丙烯土工格室拉伸特性试验研究. 科学技术与工程. 2023(20): 8788-8794 . 百度学术
    11. 王志杰,齐逸飞,杨广庆,蔡永明,刘伟超. 土工格室加筋碎石复合体大型三轴试验研究. 铁道学报. 2023(09): 161-169 . 百度学术
    12. 薛洋. 公路改扩建工程中土工格室加固效果及影响参数分析. 西部交通科技. 2022(01): 96-99 . 百度学术
    13. 左政,杨广庆,王贺,许淋颖,靳静,梁训美. 土工格室规格对加筋土剪切性能的影响. 岩土工程学报. 2022(06): 1053-1060 . 本站查看
    14. 王秉泽,苏鹏辉,杨广庆. HDPE焊接型有穿孔土工格室条带拉伸力学特性试验研究. 交通世界. 2022(30): 135-137 . 百度学术

    其他类型引用(8)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 22
出版历程
  • 收稿日期:  2016-09-27
  • 发布日期:  2017-12-24

目录

    /

    返回文章
    返回