• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

各向异性砂土宏微观特性三维离散元分析

蒋明镜, 张安, 付昌, 李涛

蒋明镜, 张安, 付昌, 李涛. 各向异性砂土宏微观特性三维离散元分析[J]. 岩土工程学报, 2017, 39(12): 2165-2172. DOI: 10.11779/CJGE201712003
引用本文: 蒋明镜, 张安, 付昌, 李涛. 各向异性砂土宏微观特性三维离散元分析[J]. 岩土工程学报, 2017, 39(12): 2165-2172. DOI: 10.11779/CJGE201712003
JIANG Ming-jing, ZHANG An, FU Chang, LI Tao. Macro and micro-behaviors of anisotropy granular soils using 3D DEM simulation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2165-2172. DOI: 10.11779/CJGE201712003
Citation: JIANG Ming-jing, ZHANG An, FU Chang, LI Tao. Macro and micro-behaviors of anisotropy granular soils using 3D DEM simulation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2165-2172. DOI: 10.11779/CJGE201712003

各向异性砂土宏微观特性三维离散元分析  English Version

基金项目: 国家自然科学重点基金项目(51639008)
详细信息
    作者简介:

    蒋明镜(1965- ),男,教授,博士生导师,主要从事天然结构性黏土、砂土、非饱和土的宏微观试验、本构模型和数值分析方面的研究以及土体渐进破坏分析,并从事相关的教学工作。E-mail: mingjing.jiang@tongji.edu.cn。

  • 中图分类号: TU43

Macro and micro-behaviors of anisotropy granular soils using 3D DEM simulation

  • 摘要: 各向异性对砂土强度和变形特性有显著的影响,为了研究各向异性砂土的宏微观特性,基于三维离散元法,对7个不同沉积角的试样进行了一系列的三轴模拟试验。利用“Clump”命令生成近似椭球形状颗粒,并且采用三维抗转动模型来模拟颗粒间的抗转动能力。离散元模拟结果与已知室内试验结果吻合很好。结果表明:随着沉积角的增大,偏应力和轴向应变的关系逐渐由应变软化向应变硬化发展。沉积角较小的试样剪胀性更强并且容易到达临界状态,颗粒组构-应力联合不变量(表征颗粒长轴组构张量和应力张量的相对角度)的值接近于-1,且颗粒长轴组构各向异性先增大后减小;然而对于沉积角较大的试样,在轴向应变50%处,仍不能达到临界状态,并且联合不变量的值大于-1,颗粒长轴组构各向异性先减小后不断增大。对于法向接触组构,组构主轴方向迅速向应力主轴方向偏转,组构各向异性的演化规律与偏应力随轴向应变的演化规律相似。
    Abstract: Anisotropy has a significant effect on the strength and deformation characteristics of granular sand. In order to study the macro- and micro-behaviors of anisotropic sand, a series of numerical triaxial tests are performed on seven specimens with different bedding angles using the three-dimensional discrete element method (DEM). The approximate ellipse-shaped particles are generated using the command of clump, and a 3D rolling resistance model is implemented to simulate the local rolling resistance between particles. Good agreement is achieved between the present DEM simulation results and previously published experimental results. The relationship between deviator stress and axial strain changes from strain softening to strain hardening with the increase in bedding angel. The specimens with smaller inclination angels are more dilative and easier to reach the critical state. The combined invariants representing the relative orientation of particle orientation fabric tensor and stress tensor can approach nearly to -1. Their fabric anisotropies of particle orientation increase first and then decrease. However, for the specimens with higher bedding angels, the critical state cannot be reached even when the axial strain reaches 50% and the combined invariants are much larger than -1. Their fabric anisotropies first drop and then continuously increase. For the contact normal based fabric tensor, the principal axe rotates instantly toward the principal axe of the stress tensor, and the evolution of fabric anisotropy is similar to that of deviatoric stress against the axial strain.
  • [1] CASAGRANDE A, CARILLO N. Shear failure of anisotropic materials[J]. Journal of Boston Society of Civil Engineers, 1944, 31(4): 74-81.
    [2] ODA M, KOISHIKAWA I, HIGUCHI T. Experimental study of anisotropic shear strength of sand by plane strain test[J]. Soils and Foundations, 1978, 18(1): 25-38.
    [3] ODA M. Initial fabrics and their relations to mechanical properties of granular material[J]. Soils and Foundations. 1972, 12(1): 17-36.
    [4] ARTHUR J R F, MENZIES B K. Inherent anisotropy in a sand[J]. Géotechnique, 1972, 22(1): 115-128.
    [5] TATSUOKA F, SAKAMOTO M, KAWAMURA T, et al. Strength and deformation characteristics of sand in plane strain compression at extremely low pressures[J]. Soils and Foundations, 1986, 26(1): 65-84.
    [6] GUO P J. Modified direct shear test for anisotropic strength of sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(9): 1311-1318.
    [7] 童朝霞, 周少鹏, 姚仰平, 等. 测定各向异性砂土抗剪强度特性的新型直剪装置及初步应用[J]. 岩石力学与工程学报, 2012, 31(12): 2579-2584.(TONG Zhao-xia, ZHOU Shao-peng, YAO Yang-ping, et al. An improved direct shear apparatus for shear strength of anisotropic sands and its primary application[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2579-2584. (in Chinese))
    [8] PRADHAN T B S, TATSUOKA F, HORII N. Simple shear testing on sand in a torsional shear apparatus.[J]. Soils and Foundations, 1988, 28(2): 95-112.
    [9] GAO Z, ZHAO J. Constitutive modeling of anisotropic sand behavior in monotonic and cyclic loading[J]. Journal of Engineering Mechanics, 2015, 04015017(8).
    [10] LI X S, DAFALIAS Y F. Constitutive modeling of inherently anisotropic sand behavior[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2002, 128(10): 868-880.
    [11] YIN Z Y, CHANG C S, HICHER P Y. Micromechanical modelling for effect of inherent anisotropy on cyclic behaviour of sand[J]. International Journal of Solids & Structures, 2010, 47(14/15): 1933-1951.
    [12] YAO Y P, KONG Y X. Extended UH model: Three-dimensional unified hardening model for anisotropic clays[J]. Journal of Engineering Mechanics, 2011, 138(7): 853-866.
    [13] YAO Y P, TIAN Y, GAO Z W. Anisotropic UH model for soils based on a simple transformed stress method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(1): 54-78.
    [14] LI X S, DAFALIAS Y F. Anisotropic critical state theory: role of fabric[J]. Journal of Engineering Mechanics, 2012, 138(3): 263-275.
    [15] GAO Z W, ZHAO J D, LI X S, et al. A critical state sand plasticity model accounting for fabric evolution[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2014, 38(4): 370-390.
    [16] ODA M, KAWAMOTO K, SUZUKI K, et al. Microstructural interpretation on reliquefaction of saturated granular soils under cyclic loading[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2001, 127(5): 416-423.
    [17] LI X, LI X S. Micro-macro quantification of the internal structure of granular materials[J]. Journal of Engineering Mechanics, 2009, 135(7): 641-656.
    [18] JIANG M J, LI T, SHEN Z F. Fabric rates of elliptical particle assembly in monotonic and cyclic simple shear tests: a numerical study[J]. Granular Matter, 2016, 18(3): 1-14.
    [19] JIANG M J, LI T, CHAREYRE B. Fabric rates applied to kinematic models: evaluating elliptical granular materials under simple shear tests via discrete element method[J]. Granular Matter, 2016, 18(3): 1-15.
    [20] 蒋明镜, 付 昌, 刘静德, 等. 不同沉积方向各向异性结构性砂土离散元力学特性分析[J]. 岩土工程学报, 2016, 38(1): 138-146. (JIANG Ming-jing, FU Chang, LIU Jing-de, et al. DEM simulations of anisotropic structured sand with different deposit directions[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 138-146. (in Chinese))
    [21] 蒋明镜, 陈 添, 刘静德, 等. 沉积角对净砂宏微观力学特性影响的离散元分析[J]. 岩土力学, 2016, 37(2): 554-562. (JIANG Ming-jing, CHEN Tian, LIU Jing-de, et al. Discrete element analysis of effects of sedimentary angle on macro-micromechanical properties of pure sand[J]. Rock and Soil Mechanics, 2016, 37(2): 554-562. (in Chinese))
    [22] TING J M, MEACHUM L, ROWELL J D. Effect of particle shape on the strength and deformation mechanisms of ellipse‐shaped granular assemblages[J]. Engineering Computations, 2013, 12(2): 99-108.
    [23] MAHMOOD Z, IWASHITA K. Influence of inherent anisotropy on mechanical behavior of granular materials based on DEM simulations[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34(8): 795-819.
    [24] YAN W M, ZHANG L. Fabric and the critical state of idealized granular assemblages subject to biaxial shear[J]. Computers and Geotechnics, 2013, 49: 43-52.
    [25] NG T T. Macro- and micro-behavior of granular materials under different sample preparation methods and stress paths[J]. International Journal of Solids & Structures, 2004, 41(21): 5871-5884.
    [26] Itasca Consulting Group Inc. PFC3D (particle flow code in three dimensions) version 5.0 manual[M]. Minneapolis: Itasca Consulting Group Inc, 2015.
    [27] JIANG M J, SHEN Z F, WANG J F. A novel three-dimensional contact model for granulates incorporating rolling and twisting resistances[J]. Computers and Geotechnics, 2015, 65: 147-163.
    [28] JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers & Geotechnics, 2003, 30(7):579-597.
    [29] THORNTON C. Numerical simulations of deviatoric shear deformation of granular media[J]. Géotechnique, 2000, 50(1): 43-54.
    [30] ZHAO X L, EVANS T M. Numerical analysis of critical state behaviors of granular soils under different loading conditions[J]. Granular Matter, 2011, 13(6):751-764.
    [31] LAM W K, TATSUOKA F. Effects of initial anisotropic fabric and σ 2 on strength and deformation characteristics[J]. Soils and Foundations, 1988, 28(1): 89-106.
    [32] ODA M, NEMAT-NASSER S, KONISHI J. Stress-induced anisotropy in granular masses[J]. Soils and Foundations, 1985, 25(3): 85-97.
  • 期刊类型引用(11)

    1. 马晓斌,王士民,刘畅,钟美昀. 地层侧压力系数对盾构隧道双层衬砌结构力学特性影响模型试验研究. 岩土工程学报. 2025(04): 725-735 . 本站查看
    2. 符亚鹏,豆留盼,靳宝成,王新东,方勇. 山岭铁路盾构隧道荷载及结构受力特性研究. 铁道工程学报. 2024(02): 61-67 . 百度学术
    3. 王迎超,徐杭,郝英,周鑫,刘泾堂,李元海. 公路隧道箱型预制仰拱变形破坏的模型试验研究. 浙江大学学报(工学版). 2024(07): 1417-1426 . 百度学术
    4. 王宏超,胡军,周永强,付晓东. 二次衬砌施作时机对盾构隧道纵向力学性能的影响分析. 隧道与地下工程灾害防治. 2024(02): 99-112 . 百度学术
    5. 陈子全,孙振宇,周子寒,李天胜,汪波,徐国文,蒋长伟. 钻爆法隧道机械化施工二衬支护时机优化方法. 中国公路学报. 2024(07): 70-81 . 百度学术
    6. 王兰,邢丽,魏纲,木志远,徐天宝,金子原. 新型钢-混凝土组合型盾构管片受力性能数值分析. 低温建筑技术. 2024(12): 91-96 . 百度学术
    7. 沈宇鹏,张旺,蔡志勇,吕金彪,刘腾,李星晨. 侧邻既有车站隧道开挖面不对称失稳特征研究. 铁道工程学报. 2023(07): 80-85+92 . 百度学术
    8. 陈志敏,李江鹏,薛智文. 极高地应力软岩隧道丢失变形与控制模型试验研究. 现代隧道技术. 2022(01): 164-175 . 百度学术
    9. 胡丰产,刘忠,李奇,吴松锋. 破碎围岩隧道二次衬砌施作时机研究. 人民长江. 2022(09): 121-126 . 百度学术
    10. 胡盛华,吴勇,姜文涛,刘浩杰. 云南省香丽高速浅埋隧道进口段二次衬砌支护时机分析. 水利水电快报. 2021(07): 24-26+44 . 百度学术
    11. 宋洋,王韦颐,杜春生. 砂-砾复合地层盾构隧道开挖面稳定模型试验与极限支护压力研究. 岩土工程学报. 2020(12): 2206-2214 . 本站查看

    其他类型引用(11)

计量
  • 文章访问数:  383
  • HTML全文浏览量:  14
  • PDF下载量:  354
  • 被引次数: 22
出版历程
  • 收稿日期:  2016-09-18
  • 发布日期:  2017-12-24

目录

    /

    返回文章
    返回