• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

土工格栅控制液化土体流动变形的试验研究

陈育民, 周晓智, 徐君

陈育民, 周晓智, 徐君. 土工格栅控制液化土体流动变形的试验研究[J]. 岩土工程学报, 2017, 39(10): 1922-1929. DOI: 10.11779/CJGE201710022
引用本文: 陈育民, 周晓智, 徐君. 土工格栅控制液化土体流动变形的试验研究[J]. 岩土工程学报, 2017, 39(10): 1922-1929. DOI: 10.11779/CJGE201710022
CHEN Yu-min, ZHOU Xiao-zhi, XU Jun. Experimental investigation on flow deformation of liquefiable soil reinforced with geogrids[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1922-1929. DOI: 10.11779/CJGE201710022
Citation: CHEN Yu-min, ZHOU Xiao-zhi, XU Jun. Experimental investigation on flow deformation of liquefiable soil reinforced with geogrids[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1922-1929. DOI: 10.11779/CJGE201710022

土工格栅控制液化土体流动变形的试验研究  English Version

基金项目: 国家自然科学基金面上项目(51379067,51679072); 重点国际合作研究项目(5141001028); 教育部创新团队发展计划(IRT_15R17); 河海大学中央高校基本科研业务费项目(2015B17314)
详细信息
    作者简介:

    陈育民(1981- ),男,教授,硕士生导师,主要从事土动力学与土工抗震领域的教学与科研工作。E-mail:ymchenhhu@163.com。

  • 中图分类号: TU43

Experimental investigation on flow deformation of liquefiable soil reinforced with geogrids

  • 摘要: 液化导致的土体大变形以及侧向流动是地震引起建筑物破坏的主要原因。采用土工格栅作为主要加固材料,开展建筑物荷载作用下液化场地流动变形的振动台试验研究,考虑水平层状土工格栅、包裹状土工格栅和土工格栅+无纺布联合处理等3种加固方案对结果的影响,从超孔隙水压力发展、建筑物沉降量以及格栅应变特性等分析加固方案对液化变形的处理效果。试验表明:采用上述3种加固方案所得的相同埋深处超孔隙水压力峰值基本相等,表明土工格栅的加入基本不能改变地基的液化状态,而后期超孔隙水压力在土工格栅+无纺布联合加固方案下消散速度最快。与其它两种加固方案相比,土工格栅+无纺布联合加固方案下建筑物沉降量最小,相比未加固工况沉降量减少24%,土工格栅中间位置的应变峰值小于边缘位置的应变峰值。采用土工格栅+无纺布联合加固时,具有较大表面积的无纺布对该覆盖区域液化土体有较好的约束作用,限制了砂土颗粒的竖向移动。此外,砂土颗粒对无纺布的作用力将由土工格栅承担,这种作用力将有利于土工格栅与砂土之间的摩擦效应,进一步限制液化砂土的流动变形。
    Abstract: The main causes for damage of buildings during earthquake are large deformation and lateral displacement of the soil induced by liquefaction. Using the geogrids as the main reinforcement materials, a series of shaking table tests are conducted on the liquefiable soil under the load of buildings in order to study the effects of different reinforcement schemes on the flow deformation of the soil. Three different reinforcement schemes are considered, including horizontal layered geogrids, package of geogrids, geogrids together with non-woven fabrics. The dvelopment of excess pore water pressure, the settlement of buildings and the strain properties of geogrids are obtained from the shaking table tests. The results show that the liquefaction behaviors of foundation soil can not be changed by the geogrids since the peaks of excess pore water pressure are equal at the same depth, but the excess pore water pressure dissipates more quickly for the reinforcement scheme with geogrids + non-woven fabrics. Compared with that of the other two kinds of reinforcement schemes, the settlement of buildings of the reinforcement scheme with geogrids together with non-woven fabrics is the smallest, which decreases by 24% of the settlement without reinforcement. Besides, the strain crest at the central position of the geogrids is less than that at their edge position. Using the geogrids + non-woven fabrics reinforcement scheme, the non-woven fabrics has better restriction on the liquefiable soil in coverage area because of its large surface, which limits the vertical movement of sand particles. In addition, the force between sand particles and non-woven fabrics will transfer to the geogrids, which will be beneficial to the friction between soil and geogrids. Finally, the friction can further restrict the flow deformation of liquefiable soil.
  • [1] MARCUSON W F. Definition of terms related to liquefaction[J]. Journal of the Geotechnical Engineering Division, 1978, 104(9): 1197-1200.
    [2] CLOUGH G W, IWABUCHI J, RAD N S, et al. Influence of cementation on liquefaction of sands[J]. Journal of Geotechnical Engineering, 1989, 115(8): 1102-1117.
    [3] ONOUE A, MORI N, TAKANO J. In-situ experiment and analysis on well resistance of gravel drains[J]. Soils and Foundations, 1987, 27(2): 42-60.
    [4] 孔祥国. 砂土密实度的成因分析及其评价方法的探讨[J]. 岩土工程技术, 2009, 22(6): 289-291. (KONG Xiang-guo. Formation reasons for sand density and study ofevaluation methods[J]. Chinese Journal of Geotechnical Engineering, 2009, 22(6): 289-291. (in Chinese))
    [5] 程 远, 刘松玉, 蔡国军, 等. 基于 CPTU 测试的共振密实法加固可液化地基效果评价[J]. 东南大学学报 (自然科学版), 2011, 41(5): 1075-1080. (CHENG Yuan, LIU Song-yu, CAI Guo-jun, et al. Assessment of resonance compaction method on soil liquefaction treatment through CPTU test[J]. Journal of Southeast University (Natural Science Edition), 2011, 41(5): 1075-1080. (in Chinese))
    [6] ADALIER K, SHARP M K. Embankment dam on liquefiable foundation-dynamic behavior and densification remediation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(11): 1214-1224.
    [7] JUANG C H, YANG S H, YUAN H, et al. Liquefaction in the Chi-Chi earthquake-effect of fines and capping non-liquefiable layers[J]. Soils and Foundations, 2005, 45(6): 89-101.
    [8] 包承纲. 土工合成材料界面特性的研究和试验验证[J].岩石力学与工程学报, 2006, 25(9): 1735-1744. (BAO Cheng-gang. Study on interface behavior of geosynthetics and soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(9): 1735-1744. (in Chinese))
    [9] 赵 川, 周亦唐. 土工格栅加筋碎石土大型三轴试验研究[J]. 岩土力学, 2001, 22(4): 419-422. (ZHAO Chuan, ZHOU Yi-tang. Experimental study on polymer geogrid reinforced crushed gravel by large-scale triaxialtest[J]. Rock and Soil Mechanics, 2001, 22(4): 419-422. (in Chinese))
    [10] 徐 超, 胡 荣, 贾 斌. 土工格栅加筋土地基平板载荷试验研究[J]. 岩土力学, 2013, 34(9): 2515-2520. (XU Chao, HU Rong, JIA Bin. Experimental study of geogrid-reinforced soil foundation by plate load test[J]. Rock and Soil Mechanics, 2013, 34(9): 2515-2520. (in Chinese))
    [11] VERCUEIL D, BILLET P, CORDARY D. Study of the liquefaction resistance of a saturated sand reinforced with geosynthetics[J]. Soil Dynamics and Earthquake Engineering, 1997, 16(7): 417-425.
    [12] KRISHNASWAMY N, THOMAS ISAAC N. Liquefaction analysis of saturated reinforced granular soils[J]. Journal of Geotechnical Engineering, 1995, 121(9): 645-651.
    [13] MAHESHWARI B, SINGH H, SARAN S. Effects of reinforcement on liquefaction resistance of Solanisand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(7): 831-840.
    [14] MITTAL S, CHAUHAN R. Liquefaction behavior of reinforced saturated sand under dynamic conditions[J]. International Journal of Geotechnical Engineering, 2013, 7(1): 109-114.
    [15] 王丽艳, 陈国兴, 高 鹏, 等. 可液化土中格栅加筋土挡墙地震变形特性大型振动台试验[J]. 中国公路学报, 2014, 27(9): 25-31. (WANG Li-yan, CHEN Guo-xing, GAO Peng, et al. Large-scale shaking table tests on seismic deformation of geogrid reinforced soil retaining walls in liquefiable soils[J]. China Journal of Highway and Transport, 2014, 27(9): 25-31. (in Chinese))
    [16] 王丽艳, 孙 田, 陈 苏. 近远场地震中土工格栅加筋土挡墙抗震特性的振动台试验研究[J]. 土木工程学报, 2015(2): 103-110. (WANG Li-yan, SUN Tian, CHEN Su. Large scale shaking table test on seismic behaviors of geogrid reinforced retaining walls under near-fault and far-field ground motions[J]. China Civil Engineering Journal, 2015(2): 103-110. (in Chinese))
    [17] KRISHNA A M, BHATTACHARJEE A. Behavior of rigid-faced reinforced soil-retaining walls subjected to different earthquake ground motions[J]. International Journal of Geomechanics, 2016: 06016007.
    [18] WANG L Y, DU X L, ZHANG F X. Seismic response of a geogrid reinforced retaining wall by shaking table test[C]// Advances in Soil Dynamics and Foundation Engineering. ASCE. Shanghai, 2014: 517-524.
    [19] GULER E, SELEK O. Reduced-scale shaking table tests on geosynthetic-reinforced soil walls with modular facing[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(6): 04014015.
  • 期刊类型引用(1)

    1. 吴跃东,毛伟,刘坚,刘辉. 装配式智能调平锚桩静载试验设备研发与应用. 河海大学学报(自然科学版). 2025(02): 71-77 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  579
  • HTML全文浏览量:  5
  • PDF下载量:  182
  • 被引次数: 1
出版历程
  • 收稿日期:  2016-06-21
  • 发布日期:  2017-10-24

目录

    /

    返回文章
    返回