• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于时效变形的脆性围岩最优支护时机研究

张建海, 王仁坤, 周钟, 郑路, 张茹, 王璐, 谢和平

张建海, 王仁坤, 周钟, 郑路, 张茹, 王璐, 谢和平. 基于时效变形的脆性围岩最优支护时机研究[J]. 岩土工程学报, 2017, 39(10): 1908-1914. DOI: 10.11779/CJGE201710020
引用本文: 张建海, 王仁坤, 周钟, 郑路, 张茹, 王璐, 谢和平. 基于时效变形的脆性围岩最优支护时机研究[J]. 岩土工程学报, 2017, 39(10): 1908-1914. DOI: 10.11779/CJGE201710020
ZHANG Jian-hai, WANG Ren-kun, ZHOU Zhong, ZHENG Lu, ZHANG Ru, WANG Lu, XIE He-ping. Optimum support time of brittle underground cavern based on time-dependent deformation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1908-1914. DOI: 10.11779/CJGE201710020
Citation: ZHANG Jian-hai, WANG Ren-kun, ZHOU Zhong, ZHENG Lu, ZHANG Ru, WANG Lu, XIE He-ping. Optimum support time of brittle underground cavern based on time-dependent deformation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1908-1914. DOI: 10.11779/CJGE201710020

基于时效变形的脆性围岩最优支护时机研究  English Version

详细信息
    作者简介:

    张建海(1968- ),男,教授,博士生导师,主要从事岩土工程和地下工程的理论和计算分析研究工作。E-mail:z3257@263.com。

    通讯作者:

    郑路,E-mail:zhenglu@scu.edu.cn

  • 中图分类号: TU457

Optimum support time of brittle underground cavern based on time-dependent deformation

  • 摘要: 现代地下工程支护结构设计的基本指导思想是按照“新奥法”原理,强调通过适时加固围岩,使得围岩成为承载结构的主体。但是对于支护时机的掌握,目前仍然缺乏可靠的理论和公式的指导,只能根据现场监测信息和经验判断来确定。提出脆性围岩的“适时支护”,是指在围岩达到弹性极限应变而破坏之前进行支护,即在时效变形作用下,围岩应力处于本构关系弹性段后段,但是还没有进入软化的非稳定段。基于这一思想以及地下工程时效变形特征,提出了最优支护时机的近似计算公式。研究表明:最优支护时机与围岩收敛时间、围岩强度应力比、开挖后应力以及支护围压相关。由于围岩应力处处不同,可以由公式计算得到顶拱、边墙等不同部位的最优支护时机,从而指导支护设计。研究对长期困扰地下工程界的脆性围岩最优支护时机问题提出了一种理论方法。
    Abstract: As the basic principle used in modern underground engineering, the New Austrian Tunneling Method focuses on providing timely and optimized safe support to develop the maximum self-supporting capacity of the rock or soil itself for the stability of the underground opening. But up to now, no reliable formula and theoretical guidance for timely support have been established. The support time can only be empirically determined based on the in-situ monitoring measurements. The timely and optimized support which uses adequate self-bearing capability of surrounding rock means that the rock stress is in the final stage of elastic deformation, but before brittle failure occurs when reaching the critical elastic strain limit. Based on this idea and the characteristics of time-dependent deformation of underground engineering, an approximation formula to calculate the optimum support time is proposed. The study shows that the optimum support time is related to the deformation convergence time, ratio of rock strength to geo-stress, stress after excavation and anchorage pressure. The optimum support time for top arch and side walls can be determined according to the stresses of surrounding rock from point to point. This study may provide a theoretical method to determine the optimum support time which is a critical problem of underground engineering for a long time.
  • [1] 韩瑞庚. 地下工程新奥法[M]. 北京: 科学出版社, 1987. (HAN Rui-geng. New Austrian tunneling method in underground engineering[M]. Beijing: Science Press, 1987. (in Chinese))
    [2] DE FARIAS M M, MORAES J A H, DE ASSIS A P. Displacement control in tunnels excavated by the NATM: 3-D numerical simulations[J]. Tunneling and Underground Space Technology, 2004, 19: 283-293.
    [3] BIZJAK K F, PETKOVSEK B. Displacement analysis of tunnel support in soft rock around a shallow highway tunnel at Golovec[J]. Engineering Geology, 2004, 75(1): 89-106.
    [4] 王祥秋, 杨林德, 高文华. 软弱围岩蠕变损伤机理及合理支护时间的反演分析[J]. 岩石力学与工程学报, 2004, 23(5): 793-796. (WANG Xiang-qiu, YANG Lin-de, GAO Wen-hua. Creep damage mechanism and back analysis of optimum support time for soften rockmass[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(5): 793-796. (in Chinese))
    [5] 王小平. 软岩巷道合理支护时间模拟研究[J]. 采矿与安全工程学报, 2006, 23(1): 103-106. (WANG Xiao-ping. Time simulation of rational support for soft rock roadway[J]. Journal of Mining & Safety Engineering, 2006, 23(1): 103-106. (in Chinese))
    [6] CHOI Sung-Oong, SHIN Hee-Soon. Stability analysis of a tunnel excavated in a weak rock mass and the optimal supporting system design[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 41(3): 876-881.
    [7] 刘志春, 李文江, 朱永全, 等. 软岩大变形隧道二次衬砌施作时机探讨[J]. 岩石力学与工程学报, 2008, 27(3): 580-588. (LIU Zhi-chun, LI Wen-jiang, ZHU Yong-quan, et al. Research on construction time of secondary lining in soft rock of large-deformation tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(3): 580-588. (in Chinese))
    [8] 王中文, 方建勤, 夏才初, 等. 考虑围岩蠕变特性的隧道二衬合理支护时机确定方法[J]. 岩石力学与工程学报, 2010, 29(增刊1): 3241-3246. (WANG Zhong-wen, FANG Jian-qin, XIA Cai-chu, et al. Determination method of supporting time for secondary lining in tunnel considering rock creep behaviors[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 3241-3246. (in Chinese))
    [9] 吴梦军, 张永兴, 刘新荣, 等. 基于现场测试的大跨扁平连拱隧道最佳支护时机研究[J]. 水文地质工程地质, 2012, 39(1): 53-57. (WU Meng-jun, ZHANG Yong-xing, LIU Xin-rong, et al. A study of the optimal supporting time of large span and falt multi-arch tunnel based on site monitoring[J]. Hydrogeology & Engineering Geology, 2012, 39(1): 53-57. (in Chinese))
    [10] GUAN Zhen-chang, JIANG Yu-jing, YOSHIHIKO T, et al. A new rheological model and its application in mountain tunnelling[J]. Tunnelling and Underground Space Technology, 2008, 23: 292-299.
    [11] 周先齐, 王 伟. 向家坝大型地下厂房长期稳定性研究[J]. 地下空间与工程学报, 2012, 8(5): 1026-1033, 1047. (ZHOU Xian-qi, WANG Wei. Study on the long-term stability of large-scale underground plant of Xiangjiaba hydropower station[J]. Chinese Journal of Underground Space and Engineering, 2012, 8(5): 1026-1033. (in Chinese))
    [12] 陆银龙, 王连国, 张 蓓, 等. 软岩巷道锚注支护时机优化研究[J]. 岩土力学, 2012, 33(5): 1395-1401. (LU Yin-long, WANG Lian-guo, ZHNG Bei, et al. Optimization of bolt-grouting time for soft rock roadway[J]. Rock and Soil Mechanics, 2012, 33(5): 1395-1401. (in Chinese))
    [13] 荣 耀. 巷道围岩支护时与围岩级别关系的研究[J]. 矿山压力顶板管理, 2003, 20(4): 11-13. (RONG Yao. The study of the relation of pudding time of tunnel’s country rock support and the class of the country rock[J]. Ground Pressure and Strata Control, 2003, 20(4): 11-13. (in Chinese))
    [14] 汪 波, 何 川, 俞 涛. 苍岭隧道岩爆预测的数值分析及初期支护时机探讨[J]. 岩土力学, 2007, 28(6): 1181-1186. (WANG Bo, HE Chuan, YU Tao. Study on numerical analysis of rockburst and primary support time on Cangling Tunnel[J]. Rock and Soil Mechanics, 2007, 28(6): 1181-1186. (in Chinese))
    [15] 朱泽奇, 盛 谦, 刘继国, 等. 坚硬围岩初期支护合理时机研究[J]. 地下空间与工程学报, 2010, 6(6): 1240-1245. (ZHU Ze-qi, SHENG Qian, LIU Ji-guo, et al. Study on primary supporting time for hard surrounding rockmass[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(6): 1240-1245. (in Chinese))
    [16] 周 勇, 柳建新, 方建勤, 等. 岩体流变情况下隧道合理支护时机的数值模拟[J]. 岩土力学, 2012, 33(1): 268-272, 279. (ZHOU Yong, LIU Jian-xin, FANG Jian-qin, et al. Numerical simulation for appropriate lining time of tunnel considering rock mass rheological conditions[J]. Rock and Soil Mechanics, 2012, 33(1): 268-272, 279. (in Chinese))
    [17] 程良奎, 张培文, 王 帆. 岩土锚固工程的若干力学概念问题[J]. 岩石力学与工程学报, 2015, 34(4): 668-682. (CHENG Liang-kui, ZHANG Pei-wen, WANG Fan. Several mechanical concepts for anchored structures in rock and soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4): 668-682. (in Chinese)
  • 期刊类型引用(22)

    1. 何艳. 生态文明背景下滨海地区地下空间开发策略研究——以青岛国际资源配置中心为例. 未来城市设计与运营. 2025(03): 18-22 . 百度学术
    2. 王新,姜弘,王文渊,孙志勇. 超大城市深层地下空间利用策略与技术挑战. 中国市政工程. 2025(02): 82-85+89+148 . 百度学术
    3. 程锦山,管华栋,王观石,汪永超,林强. 单轴压缩下不同饱和度红砂岩横波特征研究. 有色金属科学与工程. 2024(01): 105-114 . 百度学术
    4. 陈湘生,丁航,李方政,陈曦,高伟,王恒,王磊,陈汉青. 地铁双线隧道下穿既有车站冻结加固冻胀控制措施. 煤炭学报. 2024(01): 172-180 . 百度学术
    5. 姚国圣,吴晓俊,苏鹏. 上海软土单层地下室大面积换撑基坑变形特性实测分析. 结构工程师. 2024(03): 179-186 . 百度学术
    6. 孟旭,陈东霞,陈波,袁博. 滨海悬挂式止水帷幕深基坑非稳定渗流模型. 水资源与水工程学报. 2024(06): 149-156 . 百度学术
    7. 李琳,李彬,刘东,韩笑. 深厚软土区深大异形基坑开挖对临近建构筑物的影响. 长江科学院院报. 2023(01): 140-145 . 百度学术
    8. 罗嵩,陈思明,白伟,孙明祥,段小明. 近接运营线路超长深基坑分坑施工方案比选研究. 路基工程. 2023(02): 173-178 . 百度学术
    9. 吕明超,李杰. 现代新城区毗邻楼宇地下空间联通开发利用分析. 住宅与房地产. 2023(11): 89-91 . 百度学术
    10. 徐松,童立红,丁海滨,徐长节,吴智龙. 不同开挖顺序对基坑围护结构变形影响分析. 华东交通大学学报. 2023(04): 48-55 . 百度学术
    11. 黄海明. 城市地下岩土工程的常见问题及措施分析. 居舍. 2023(23): 133-136 . 百度学术
    12. 杨军,郭书强,方广涛,张立明,张坤勇. 某超深基坑涌水原因分析. 四川建材. 2023(10): 71-74+90 . 百度学术
    13. 包小华,喻益亮,刘春讯,赵德博,陈湘生,崔宏志. 地震作用下深层地下空间多个结构相互作用机制及影响因素分析. 建筑结构学报. 2023(S2): 341-349 . 百度学术
    14. 胡钟予,刘国买,姚志雄,吴贲. 软土深基坑施工对近接铁路桥变形影响分析. 福建理工大学学报. 2023(06): 523-530 . 百度学术
    15. 韩辉,王锐松,倪芃芃. 深圳滨海大道改造工程超宽坑中坑降水与开挖响应实例分析. 隧道建设(中英文). 2023(12): 2026-2035 . 百度学术
    16. 李程,贾战磊,徐成皓. 软土地区某阶梯式深基坑变形监测与数值模拟. 石家庄铁道大学学报(自然科学版). 2023(04): 61-68 . 百度学术
    17. Peng Yu,Honghua Liu,Zhongsheng Wang,Jiani Fu,Hui Zhang,Jia Wang,Qi Yang. Development of urban underground space in coastal cities in China: A review. Deep Underground Science and Engineering. 2023(02): 148-172 . 必应学术
    18. 易阳. 城市地下空间岩土工程问题及安全监测措施. 工程技术研究. 2022(02): 130-131 . 百度学术
    19. 武华. 上下近接既有构筑物隧道悬臂掘进机施工技术研究. 铁道建筑技术. 2022(05): 153-158 . 百度学术
    20. 杨洪杰,崔永高,孙建军. 上海第(9)层减压降水悬挂式隔水帷幕深度的设计方法. 建筑施工. 2022(08): 1758-1760 . 百度学术
    21. 余以强,严鑫,肖旦强,詹伟,胡智. 交通软土地下空间开发工程地质适宜性评价指标体系研究. 科技资讯. 2022(24): 67-71 . 百度学术
    22. 蔡家齐. 深基坑开挖对既有临近建筑物影响的数值模拟分析. 数据. 2021(03): 44-46 . 百度学术

    其他类型引用(9)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 31
出版历程
  • 收稿日期:  2016-06-29
  • 发布日期:  2017-10-24

目录

    /

    返回文章
    返回