• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

土-地铁动力相互作用体系侧向变形特征研究

庄海洋, 王雪剑, 王瑞, 陈国兴

庄海洋, 王雪剑, 王瑞, 陈国兴. 土-地铁动力相互作用体系侧向变形特征研究[J]. 岩土工程学报, 2017, 39(10): 1761-1769. DOI: 10.11779/CJGE201710002
引用本文: 庄海洋, 王雪剑, 王瑞, 陈国兴. 土-地铁动力相互作用体系侧向变形特征研究[J]. 岩土工程学报, 2017, 39(10): 1761-1769. DOI: 10.11779/CJGE201710002
ZHUANG Hai-yang, WANG Xue-jian, WANG Rui, CHEN Guo-xing. Characteristics of lateral deformation of soil-subway dynamic interaction system[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1761-1769. DOI: 10.11779/CJGE201710002
Citation: ZHUANG Hai-yang, WANG Xue-jian, WANG Rui, CHEN Guo-xing. Characteristics of lateral deformation of soil-subway dynamic interaction system[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1761-1769. DOI: 10.11779/CJGE201710002

土-地铁动力相互作用体系侧向变形特征研究  English Version

基金项目: 国家自然科学基金面上项目(51778290,51278246); 江苏省自然科学基金面上项目(BK20141458); 江苏省高校自然科学基金重大项目(16KJA560001)
详细信息
    作者简介:

    庄海洋(1978- ),博士,教授,主要从事岩土地震工程与地下结构抗震研究。E-mail:zhuang7802@163.com。

  • 中图分类号: TU435

Characteristics of lateral deformation of soil-subway dynamic interaction system

  • 摘要: 针对现有地下结构抗震分析方法用于地铁大型地下结构的可行性研究明显不足问题,根据中国抗震规范的相关规定设计了常见的3种场地类别,考虑输入地震动特性及其强度,通过84种有限元计算工况,分析了土-地铁地下结构非线性动力相互作用体系的侧向变形特征。结果表明,在Ⅱ、Ⅲ、Ⅳ 3个场地类别条件下输入加速度峰值较大时(0.3g和0.4g),或者场地类别为Ⅳ类时即使输入很小地震动峰值加速度时,土与结构相互作用系数均小于1,即大型地铁地下结构侧向土体总是“推着”地下结构产生最大相对变形,此时地铁地下结构周围土层的大变形将对地下结构抗震造成不利的影响。反之,将会出现地铁地下车站结构侧向最大变形大于等代土体单元的侧向变形,即地下结构的动力变形将受到周围土层的约束作用,此时将对地下结构的抗震起到有利作用。同时,也给出了场地类别和输入地震动特性对土-地铁地下结构相互作用系数的影响规律。
    Abstract: With regard to the insufficient researches on the reliability of the existing seismic analysis methods for underground structures for the seismic design of large-scale underground structures, three site classifications are designed according to the relevant seismic design codes, and the characteristics of seismic deformation of the interaction system are analyzed under 84 conditions by using the finite element method. The results show that when the peak acceleration of input earthquake wave is larger than 0.2g with any kind of site classification or when the site classification is Ⅳ under very small peak acceleration, the soil-structure interaction coefficients are all smaller than one, which means that the lateral soils with large deformation may push the underground structure to be deformed maximally. In other word, the large deformation of the surrounding soil foundation is unfavourable to the seismic performance of the large underground structures. On the contrary, the maximal deformation of the underground structures should be constrained by the surrounding soils, which is favourable to the seismic performance of the underground structures. Meanwhile, the effect laws of the site classification and the properties of input ground motion on the seismic deformation of the large underground structures are also analyzed.
  • [1] OKAMOTO S, TAMURA C, KATO K, et al. Behaviors of submerged tunnels during earthquakes[C]// Proceedings of the Fifth World Conference on Earthquake Engineering. Rome, 1973.
    [2] 川岛一彦. 地下结构の耐震设计[M]. 茨城: 鹿岛出版社, 1994. (Kawashima Kazuhiko. Aseismic design of underground structure[M]. Ibaragi: Kajima Institute Publishing Co. Ltd, 1994. (in Japanese))
    [3] ZHUANG Hai-yang, HU Zhong-hua, WANG Xue-jian, et al. Seismic responses of a large underground structure in liquefied soils by FEM numerical modeling[J]. Bulletin of Earthquake Engineering, 2015, 13(12): 3645-3668.
    [4] ZHUANG Hai-yang, HU Zhong-hua, CHEN Guo-xing. Numerical modeling on the seismic responses of a large underground structure in soft ground[J]. Journal of Vibroengineering, 2015, 17(2): 802-815.
    [5] 杨林德, 王国波, 郑永来, 等. 地铁车站接头结构振动台模型实验及地震响应的三维数值模拟[J]. 岩土工程学报, 2007, 29(12): 1892-1898. (YANG Lin-de, WANG Guo-bo, ZHENG Yong-lai, et al. Shaking table tests on subway station joint structure and 3D numerical simulation of seismic response[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(12): 1892-1898. (in Chinese))
    [6] 刘晶波, 王文晖, 赵冬冬, 等. 复杂断面地下结构地震反应分析的整体式反应位移法[J]. 土木工程学报, 2014, 47(1): 134-142. (LIU Jing-bo, WANG Wen-hui, ZHAO Dong-dong, et al. Integral response deformation method in seismic analysis of complex section underground structures[J]. China Civil Engineering Journal, 2014, 47(1): 134-142. (in Chinese))
    [7] KAWASHIMA K. Seismic design of underground structures in soft ground, a review[C]// Proceedings of the International Symposium on Tunneling in Difficult Ground Conditions. Tokyo, 1999.
    [8] SHUKLA D K, RIZZO P C, STEPHENSON D E. Earthquake load analysis of tunnels and shafts[C]// Proceedings of the Symposium on Rock Mechanics 21st, Rock Mechanics: A State of the Art, University of Missouri. Rolla, 1980.
    [9] 庄海洋, 陈国兴, 朱定华. 土体动力黏塑性记忆型嵌套面本构模型及其验证[J]. 岩土工程学报, 2006, 28(10): 1267-1272. (ZHUANG Hai-yang, CHEN Guo-xing, ZHU Ding-hua. The dynamic visco-plastic memorial nested yield surface model of soil and its verification[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1267-1272. (in Chinese))
    [10] 庄海洋, 陈国兴. 对土体动力黏塑性记忆型嵌套面模型的改进[J]. 岩土力学, 2009, 30(1): 118-122. (ZHUANG Hai-yang, CHEN Guo-xing. Father analysis on the dynamic viscous-plastic memorial nested yield surface model of soil[J]. Rock Mechanics, 2009, 30(1): 118-122. (in Chinese))
    [11] LEE J, FENVES G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(4): 892-900.
    [12] LUBLINER J, OLIVER J, OLLER S, et al. A plastic-damage model for concrete[J]. International Journal of Solids and Structures, 1989, 25(3): 299-326.
    [13] 楼梦麟, 王文剑, 朱 彤. 土–结构体系振动台模型试验中土层边界影响问题[J]. 地震工程与工程振动, 2000, 20(2): 30-36. (LOU Meng-lin, WANG Wen-jian, ZHU Tong. Soil lateral boundary effect in shaking table model test of soil-structure system[J]. Earthquake Engineering and Engineering Dynamics, 2000, 20(2): 30-36. (in Chinese))
    [14] BS 5975:2008 + A1 2011 Code of practice for temporary works procedures and the permissible stress design of falsework[S]. 2011.
    [15] 庄海洋. 土-地下结构非线性动力相互作用及其大型振动台模型试验研究[D]. 南京: 南京工业大学, 2016. (ZHUANG Hai-yang. Study on nonlinear dynamic soil-underground structure interaction and its large-size shaking table test[D]. Nanjing: Nanjing Tech University, 2006. (in Chinese))
  • 期刊类型引用(9)

    1. 宋泽宇,蒲力,马云飞. 含有机质黏土全吸力范围内土-水特征曲线试验研究. 水力发电. 2024(10): 114-118 . 百度学术
    2. 童富果,蔡文婧,薛松,刘刚,李东奇. 基于孔隙分形特征的水泥基毛细吸力预测模型. 水利水电科技进展. 2024(06): 27-33 . 百度学术
    3. 幸锦雯,孙文,余光耀,徐娜,麻建宏. 基于核磁共振及分形理论预测非饱和土石混合体SWCC. 水利水电技术(中英文). 2023(10): 180-189 . 百度学术
    4. 王海曼,倪万魁. 不同干密度压实黄土的饱和/非饱和渗透系数预测模型. 岩土力学. 2022(03): 729-736 . 百度学术
    5. 魏小棋,陈盼. 压实延安黄土土-水特性及快速测定方法探讨. 土工基础. 2022(03): 446-450 . 百度学术
    6. 王海曼,倪万魁,刘魁. 延安压实黄土土-水特征曲线的快速预测方法. 岩土力学. 2022(07): 1845-1853 . 百度学术
    7. 刘莉,姜大伟,于明波,颜荣涛,于海浩,陈波. 千枚岩全风化土的持水特性研究. 河南科技大学学报(自然科学版). 2022(06): 53-58+8 . 百度学术
    8. 高世壮,薛善彬,张鹏,李春云,王俊洁. 高温作用对应变硬化水泥基复合材料吸水性能及微结构演化特征的影响. 复合材料学报. 2022(10): 4778-4787 . 百度学术
    9. 马冬冬,马芹永,黄坤,张蓉蓉. 基于NMR的地聚合物水泥土孔隙结构与动态力学特性研究. 岩土工程学报. 2021(03): 572-578 . 本站查看

    其他类型引用(14)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 23
出版历程
  • 收稿日期:  2016-06-21
  • 发布日期:  2017-10-24

目录

    /

    返回文章
    返回