• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

面板倾角对模块式面板加筋土挡墙筋材内力的影响

张垭, 汪磊, 刘华北

张垭, 汪磊, 刘华北. 面板倾角对模块式面板加筋土挡墙筋材内力的影响[J]. 岩土工程学报, 2017, 39(9): 1680-1688. DOI: 10.11779/CJGE201709016
引用本文: 张垭, 汪磊, 刘华北. 面板倾角对模块式面板加筋土挡墙筋材内力的影响[J]. 岩土工程学报, 2017, 39(9): 1680-1688. DOI: 10.11779/CJGE201709016
ZHANG Ya, WANG Lei, LIU Hua-bei. Influence of facing batter angle on reinforcement load of reinforced soil retaining wall with modular block facing[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1680-1688. DOI: 10.11779/CJGE201709016
Citation: ZHANG Ya, WANG Lei, LIU Hua-bei. Influence of facing batter angle on reinforcement load of reinforced soil retaining wall with modular block facing[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1680-1688. DOI: 10.11779/CJGE201709016

面板倾角对模块式面板加筋土挡墙筋材内力的影响  English Version

基金项目: 国家自然科学基金项目(51379082)
详细信息
    作者简介:

    张 垭(1990- ),男,重庆人,硕士研究生,主要从事加筋土挡墙内力研究。E-mail:290407778@qq.com。

    通讯作者:

    刘华北,E-mail:hbliu@hust.edu.cn

  • 中图分类号: TU41

Influence of facing batter angle on reinforcement load of reinforced soil retaining wall with modular block facing

  • 摘要: 土工合成材料加筋土挡墙具有良好的力学性能和优越的经济性等优点,在国内外得到了越来越广泛的应用。然而,众多加筋土挡墙的试验数据表明,对加筋土挡墙受力机理的理论研究是滞后于工程建设实践的。针对筋材内力计算这一重要问题,研究了面板倾角对加筋土挡墙筋材内力的影响。首先,以RMC试验挡墙为原型,验证了数值模拟方法的有效性;然后,利用数值模拟方法,分析了不同工况下,加筋土挡墙内竖向土压力和筋材应变随着面板倾角增大的变化趋势。数值模拟结果表明,筋材内力随着加筋土挡墙面板倾角的增大而降低。在数值研究结果的基础上,从潜在滑动面附近土单元应力状态及滑动楔形体的平衡两个方面分析了面板倾角的作用机理,定位了填土竖向土压力以及面板基底水平摩擦阻力两个影响筋材内力的关键因素。
    Abstract: The reinforced soil retaining walls have the advantages of good mechanical performance and high cost effectiveness. They have been widely used all over the world. However, the theoretical researches on the reinforcement load and its mechanism have lagged behind the engineering practice. Many actual experimental data have proven this point. The influence of facing batter angle on the reinforcement loads of reinforced soil retaining wall is investigated. At first, by comparing with the measured results from two Royal Military College (RMC) test walls, the suitability of numerical simulations for the reinforced soil retaining walls is validated. Then, using the numerical simulation method, the vertical earth pressures and reinforcement loads on the reinforced soil retaining wall with different batter angles under different working conditions are analyzed. It is shown that the reinforcement load decreases with an increase in the facing batter angle. Based on the numerical results, the influencing mechanism of the facing batter angle on the reinforcement load is identified by analyzing the mechanical equilibrium of potential sliding wedge and the soil stress near the potential failure surface. The vertical soil stress and base frictional resistance of the facing are two important factors contributing to the reduction of reinforcement load.
  • [1] JTJ/T—019—98 公路土工合成材料应用技术规范[S]. 1998. (JTJ/T—019—98 Technical specifications for application of geosynthetics in highway[S]. 1998. (in Chinese))
    [2] BS 8006—1:2010 Code of practice for strengthened/ reinforeced soils and other fills[S]. 2010.
    [3] FHWA-NHI-10-024 Design and constrution of mechanically stabilized earth walls and reinforeced soil slopes-volume 1[S]. 2009.
    [4] NCMA Design manual for segmental retaining walls-second edition[S]. 1997.
    [5] DIBt German code of practice for the design of reinforced soil structures[S]. 1997.
    [6] ADIB M E. Internal lateral earth pressure in earth walls[D]. Calif: University of California, 1988.
    [7] LESHCHINSKY D. Geosynthetic reinforced soil structures[J]. Journal of Geotechnical Engineering, 1989, 115(10): 1459-1478.
    [8] ADIB M E. Lateral earth pressure in reinforced soil walls[J]. Geotech Engrg, 1991.
    [9] MIYATA Y. Development of K-stiffness Method for geosynthetic reinforced soil walls constructed with c - φ soils[J]. Canadian Geotechnical Journal, 2007, 44(12): 1391-1416.
    [10] ALLEN T M. A new working stress method for prediction of reinforcement loads in geosynthetic walls[J]. Canadian Geotechnical Journal, 2003, 40(5): 976-994.
    [11] MIRMORADI S H. evaluation of the combined effect of toe resistance and facing inclination on behavior of GRS walls[J]. Geotextiles and Geomembranes, 2016, 44(3): 287-294.
    [12] 彭芳乐, 曹延波. 加筋砂土挡墙筋材层数影响的有限元分析[J]. 岩土工程学报, 2011(11): 1700-1707. (PENG Fang-le, Cao Yan-bo. FEM analysisof effect of reinforced layer numbers on bearing capacity and deformation of reinforced-sand retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2011(11): 1700-1707. (in Chinese))
    [13] 刘华北. 考虑蠕变、地震效应的土工格栅砂性土加筋挡墙弹塑性有限元分析[J]. 岩土工程学报, 2007(6): 917-921. (LIU Hua-bei. Elasto-plastic finite element analysis of geogrid-reinforced sandy soil retaining walls considering effect of creep and earthquake[J]. Chinese Journal of Geotechnical Engineering, 2007(6): 917-921. (in Chinese))
    [14] 栾茂田, 李敬峰, 肖成志, 等. 土工格栅加筋挡土墙工作性能的非线性有限元数值分析[J]. 岩石力学与工程学报, 2005, 24(14): 2428-2433. (LUAN Mao-tian, LI Jing-feng, XIAO Cheng-zhi, et al. Numerical analysis of performance of geogrids reinforced retaining walls by nonlinear FEM[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(14): 2428-2433. (in Chinese))
    [15] 常倩倩, 束一鸣, 黄 松, 等. 加筋间距对加筋挡土墙工作性态的影响[J]. 河海大学学报(自然科学版), 2007(5): 557-562. (CHANG Qian-qian, SHU Yi-ming, HUANG Song, et al. Effect of bar spacing on performance of reinforced soil retaining walls[J]. Journal of Hohai University (Natural Science), 2007(5): 557-562. (in Chinese))
    [16] 彭芳乐, 李福林, 平川大贵, 等. 格栅加筋挡土墙加载速率相关的变形强度特性分析及有限元模拟[J]. 岩土工程学报, 2011(2): 174-180. (PENG Fang-le, LI Fu-lin, HIRAKAWA Daiki, et al. Deformation and strength characteristics of geogrid-reinforced soil retaining wall under change of loading rate and its FEM simulation[J]. Chinese Journal of Geotechnical Engineering, 2011(2): 174-180. (in Chinese))
    [17] 肖成志, 栾茂田, 杨 庆, 等. 加筋挡土墙长期工作性能的黏弹塑性有限元分析[J]. 岩石力学与工程报, 2006(10): 1990-1996. (XIAO Cheng-zhi, LUAN Mao-tian, YANG Qing, et al. Numerical analysys of long-term performance of reinforced earth retaining walls by FEM based on viscoelasto-plasticity[J]. Chinese Journal of Rock Mechanics and Engineering, 2006(10): 1990-1996. (in Chinese))
    [18] HATAMI K, BATHURSTR J. Development and verification of a numerical model for the analysis of geosynthetic- reinforced soil segmental walls under working stress conditions[J]. Journal of Geotechnical Engineering, 2005, 42(4): 1066-1085.
    [19] LIU H. Nonlinear elastic analysis of reinforcement loads for vertical reinforced soil composites without facing restriction[J]. Journal of Geotechnical Engineering, 2016, 142(6): 04016013.
  • 期刊类型引用(13)

    1. 陈结,孟历德仁,崔义,蒲源源,陈紫阳. 基于声光联合试验的预制双裂隙砂岩损伤演化特征研究. 岩石力学与工程学报. 2025(01): 30-42 . 百度学术
    2. 王云飞,董贺,马勇超,张意文,袁乐乐. 含平行双裂隙白砂岩力学行为数值分析. 河南理工大学学报(自然科学版). 2024(03): 161-170 . 百度学术
    3. 戎虎仁,曹海云,董浩,王占盛,张佳瑶. 双孔洞倾角对红砂岩强度及其破裂分形特征影响. 公路交通科技. 2024(10): 173-183 . 百度学术
    4. 张村,高敬宜,吴润泽,师旭涛,王方田,王潇杰,韩鹏华. 含水饱和度影响下砂岩单轴压缩破碎特征及其弱化机理. 中国矿业大学学报. 2024(06): 1117-1131 . 百度学术
    5. 马记,万文,田洪义,陈伟,盛佳,舒彬. 低速酸性水化学溶液作用下砂岩损伤时效特性. 矿业研究与开发. 2023(01): 95-102 . 百度学术
    6. 李盛南,梁桥,刘新喜,张馨尤,肖俊,黄中华. 干湿循环作用下炭质泥岩溶蚀孔隙度的化学计量方法. 中国公路学报. 2023(02): 89-96 . 百度学术
    7. 梁东旭,张农,荣浩宇. 交叉裂隙岩体裂纹扩展试验及混合有限-离散元数值模拟研究. 岩土力学. 2023(04): 1217-1229 . 百度学术
    8. 卢振兴,万文. 单轴压缩下预制正交裂隙类岩石材料试验. 矿业工程研究. 2023(02): 23-28 . 百度学术
    9. 李志强,刘国锋,晏长根,董凯,崔洁. 含原生隐微裂隙岩石颗粒流模型构建及细观参数标定方法研究. 工程地质学报. 2023(06): 1842-1853 . 百度学术
    10. 赵鲁庆,彭建兵,马鹏辉,冷艳秋,朱兴华. 黄土细观界面及其灾害效应研究初探. 工程地质学报. 2023(06): 1783-1798 . 百度学术
    11. 丁新宇,万文,李祥,周彧. 含N型裂隙类岩石材料破坏特征研究. 地下空间与工程学报. 2023(S2): 640-648 . 百度学术
    12. 刘栋,万文,盛佳. 不同流速及酸化作用下砂岩的力学损伤研究. 采矿技术. 2022(02): 49-54 . 百度学术
    13. 杨治军,刘泾堂,胡金鑫,邱成虎,洪铭. 单裂隙隧洞类岩模型力学特性的数值模拟. 土木工程与管理学报. 2022(06): 98-105 . 百度学术

    其他类型引用(12)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 25
出版历程
  • 收稿日期:  2016-06-19
  • 发布日期:  2017-09-24

目录

    /

    返回文章
    返回