• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

复变函数法分析盾构隧道开挖引起的土体位移和衬砌变形

张治国, 杨轩, 宫剑飞, 王卫东

张治国, 杨轩, 宫剑飞, 王卫东. 复变函数法分析盾构隧道开挖引起的土体位移和衬砌变形[J]. 岩土工程学报, 2017, 39(9): 1626-1635. DOI: 10.11779/CJGE201709010
引用本文: 张治国, 杨轩, 宫剑飞, 王卫东. 复变函数法分析盾构隧道开挖引起的土体位移和衬砌变形[J]. 岩土工程学报, 2017, 39(9): 1626-1635. DOI: 10.11779/CJGE201709010
ZHANG Zhi-guo, YANG Xuan, GONG Jian-fei, WANG Wei-dong. Complex variable analysis of soil displacement and liner deformation induced by shield excavation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1626-1635. DOI: 10.11779/CJGE201709010
Citation: ZHANG Zhi-guo, YANG Xuan, GONG Jian-fei, WANG Wei-dong. Complex variable analysis of soil displacement and liner deformation induced by shield excavation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1626-1635. DOI: 10.11779/CJGE201709010

复变函数法分析盾构隧道开挖引起的土体位移和衬砌变形  English Version

基金项目: 国家自然科学基金项目(41772331); 上海自然科学基金项目(15ZR1429400); 国土资源部丘陵山地地质灾害防治重点实验室课题(2015k005); 建筑安全与环境国家重点实验室课题(BSBE2015-01)
详细信息
    作者简介:

    张治国(1978- ),男,博士,博士后,副教授,硕士生导师,主要从事地下工程施工对周边环境影响控制方面的研究工作。E-mail:zgzhang@usst.edu.cn。

  • 中图分类号: TU43

Complex variable analysis of soil displacement and liner deformation induced by shield excavation

  • 摘要: 盾构隧道开挖引起的地层变形历来是人们所关注的重要课题。目前,既有成果较少考虑隧道衬砌与土体相互作用所带来的影响,尤其是较少针对衬砌变形进行分析,就此基于隧道椭圆化变形边界条件,提出了考虑衬砌与土体两种不同介质相互作用下的地层位移和衬砌变形复变函数解答。在该方法中,隧道埋深只影响共形映射后圆环域的环壁厚度,而解析区域依然保持圆形,具有不会对函数解析产生影响的优势;此外,该法经共形映射后保证了边界连续性,避免了既有应力函数法为保证隧道扰动土体无穷远处位移为零,而对解析解进行修正所导致物理意义不明确的缺陷。通过实例分析,得到了隧道开挖引起的地表沉降,并与实测数据进行了对比验证;通过参数分析,获取了扰动地层和隧道衬砌变形的影响规律。结果表明:复变函数解答得到的土体位移曲线与实测值吻合较好,且地表最大沉降值更接近于实测值;隧道的埋深和半径对土体位移和衬砌变形均有较大影响,衬砌厚度对其影响虽然较小,但仍不可忽略;衬砌径向位移曲线呈仰卧的鸭蛋形,关于90°/270°轴对称,拱顶和拱底被压扁,拱顶压缩量明显大于拱底,左、右两侧压缩量小于上、下两侧,表现为收缩之后又被压扁向左、右两侧突出,且随着埋深的增大,衬砌整体上浮;衬砌环向位移曲线呈侧立的苹果形,关于0°/180°轴对称,且在90°和270°处取值为零,随着隧道埋深的增大,环向位移绝对值增大。
    Abstract: The ground deformation caused by shield excavation is always a key issue. The current studies give little attention on the impacts of interaction between tunnel liner and soils. Particularly the deformation analysis of the liner is not conducted. A complex variable solution for ground displacement and liner deformation is proposed considering the interaction of liner-soil and the boundary condition for the oval deformation. In this method, the depth of tunnel affects only the thickness of ring walls after conformal mapping and the analytical region remains round. It will not affect the function analysis. Besides, after the conformal mapping this method guarantees the continuity of boundary. It can make the soil displacements zero at infinity and avoid the analytical defects. That occurs via correcting analytical solution by which the existing stress function methods keep infinity soil displacement zero. Through the case analysis, the ground settlements induced by tunnel excavation are obtained and compared with the measured data. The deformation influence law of ground and tunnel liner is acquired through parameter analyses. The results indicate that the vertical displacement curves of soils are in good agreement with the measured values. The surface maximum settlement is closer to the actual one. The depth and radius of tunnel have a great influence on the soil displacement and liner deformation. Although the influence of thickness of liner is less, it cannot be ignored. The radial displacement of liner presents a shape of supine duck egg, which is symmetrical to the axis 90°/270°. Its value is negative, which means that the liner shrinks as a whole. The vault and arch bottom get squashed. The shrinkage in vault is greater than that in arch bottom. The shrinkage at the left and right sides is less than that at the upper and lower sides, which shows that the liner is crushed to the left and right sides after being compressed. With the increase of the tunnel depth, the liner comes up overall. The tangential displacement of the liner presents a shape of a toppled apple which is symmetrical to the axis 0°/180°. The values in 90° and 270° are zero. The absolute values of tangential displacement increase with the increase of depth.
  • [1] MAIR R J, TAYLOR R N, BRACEGIRDLE A. Subsurface settlement profiles above tunnels in clays[J]. Géotechnique, 1993, 43(2): 315-320.
    [2] CELESTINO T B, GOMES R, BORTOLUCCI A A. Errors in ground distortions due to settlement trough adjustment[J]. Tunneling and Underground Space Technology, 2000, 15(1): 97-100.
    [3] 周济民, 何 川, 方 勇, 等. 黄土地层盾构隧道受力监测与荷载作用模式的反演分析[J]. 岩土力学, 2011, 32(1): 165-171. (ZHOU Ji-min, HE Chuan, FANG Yong, et al. Mechanical property testing and back analysis of load models of metro shield tunnel lining in loess strata[J]. Rock and Soil Mechanics, 2011, 32(1): 165-171. (in Chinese))
    [4] 张剑晨, 张顶立, 张成平, 等. 北京地区浅埋暗挖法下穿施工既有隧道变形的特点及预测[J]. 岩石力学与工程学报, 2014, 33(5): 947-956. (ZHANG Jian-chen, ZHANG Ding-li, ZHANG Cheng-ping, et al. Deformation characteristics of existing tunnels induced by excavation of new shallow tunnel in Beijing[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(5): 947-956. (in Chinese))
    [5] LOGANATHAN N, POULOS H G. Analytical prediction for tunneling-induced ground movements in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(9): 846-856.
    [6] 叶 飞, 苟长飞, 陈 治, 等. 盾构隧道同步注浆引起的地表变形分析[J]. 岩土工程学报, 2014, 36(4): 618-624. (YE Fei, GOU Chang-fei, CHEN Zhi, et al. Ground surface deformation caused by synchronous grouting of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 618-624. (in Chinese))
    [7] 林存刚, 夏唐代, 梁荣柱, 等. 盾构掘进地面沉降虚拟镜像算法[J]. 岩土工程学报, 2014, 36(8): 1438-1446. (LIN Cun-gang, XIA Tang-dai, LIANG Rong-zhu, et al. Estimation of shield tunneling-induced ground surface settlements by virtual image technique[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1438-1446. (in Chinese))
    [8] BOBET A. Analytical solutions for shallow tunnels in saturated ground[J]. Journal of Engineering Mechanics, 2001, 127(12): 1258-1266.
    [9] CHOU W I, BOBET A. Prediction of ground deformations in shallow tunnels in clays[J]. Tunnelling and Underground Space Technology, 2002, 17(l): 3-19.
    [10] PARK K H. Elastic solution for tunneling-induced ground movements in clays[J]. International Journal of Geomechanics, 2004, 4(4): 310-318.
    [11] PARK K H. Analytical solution for tunneling-induced ground movement in clays[J]. Tunnelling and Underground Space Technology, 2005, 20(3): 249-261.
    [12] PUZRIN A M, BURLAND J B, STANDING J R. Simple approach to predicting ground displacements caused by tunneling in undrained anisotropic elastic soil[J]. Géotechnique, 2012, 62(4): 341-352.
    [13] 张治国, 白乔木, 赵其华. 带衬砌浅埋隧道开挖受非对称收敛变形影响的地层位移和衬砌应力分析[J]. 岩石力学与工程学报, 2016, 35(6): 1202-1213. (ZHANG Zhi-guo, BAI Qiao-mu, ZHAO Qi-hua. Elastic analysis of ground displacement and liner stress induced by shallow shield excavation considering non-uniform convergence deformation with liner[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(6): 1202-1213. (in Chinese))
    [14] VERRUIJT A. Complex variable solution for a deforming circular tunnel in an elastic half plane[J]. Géotechnique, 1997, 21(4): 77-89.
    [15] VERRUIJT A. Deformations of an elastic half plane with a circular cavity[J]. International Journal of Solids and Structures, 1998, 35(21): 2795-2804.
    [16] 王立忠, 吕学金. 复变函数分析盾构隧道施工引起的地基变形[J]. 岩土工程学报, 2007, 29(3): 319-327. (WANG Li-zhong, LÜ Xue-jin. A complex variable solution for different kinds of oval deformation around circular tunnel in an elastic half plane[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 319-327. (in Chinese))
    [17] 苏 锋, 陈福全, 施有志. 深埋双隧洞开挖的解析延拓法求解[J]. 岩石力学与工程学报, 2012, 31(2): 365-374. (SU Feng, CHEN Fu-quan, SHI You-zhi. Analytic continuation solution of deep twin-tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 365-374. (in Chinese))
    [18] 韩凯航, 张成平, 王梦恕. 浅埋隧道围岩应力及位移的显式解析解[J]. 岩土工程学报, 2014, 36(12): 2253-2259. (HAN Kai-hang, ZHANG Cheng-ping, WANG Meng-shu. Explicit analytical solutions for stress and displacement of surrounding rock in shallow tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2253-2259.(in Chinese))
    [19] 宋浩然, 张顶立, 房 倩. 浅埋海底隧道的围岩应力解析解[J]. 土木工程学报, 2015, 48(增刊1): 283-288. (SONG Hao-ran, ZHANG Ding-li, FANG Qian. Analytic solution on the stress of surrounding rocks for shallow subsea tunnel[J]. Chinese Civil Engineering Journal, 2015, 48(S1): 283-288. (in Chinese))
    [20] 魏 纲, 徐日庆. 软土隧道盾构法施工引起的纵向地面变形预测[J]. 岩土工程学报, 2005, 27(9): 1077-1081. (WEI Gang, XU Ri-qing. Prediction of longitudinal ground deformation due to tunnel construction with shield in soft soil[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(9): 1077-1081. (in Chinese))
    [21] 唐晓武, 朱 季, 刘 维. 盾构施工过程中的土体变形研究[J]. 岩石力学与工程学报, 2010, 29(2): 206-211. (TANG Xiao-wu, ZHU Ji, LIU Wei. Research on soil deformation during shield construction process[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 206-211. (in Chinese))
    [22] 梁荣柱, 夏唐代, 林存刚, 等. 盾构推进引起地表变形及深层土体水平位移分析[J]. 岩石力学与工程学报, 2015, 34(3): 583-593. (LIANG Rong-zhu, XIA Tang-dai, LIN Cun-gang, et al. Analysis of ground surface displacement and horizontal movement of deep soils induced by shield advancing[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 583-593. (in Chinese))
    [23] 施成华, 彭立敏, 刘宝琛. 盾构法施工隧道纵向地层位移与变形预计[J]. 岩土工程学报, 2003, 25(5): 585-589. (SHI Cheng-hua, PENG Li-min, LIU Bao-chen. Prediction of longitudinal movement and deformation of stratum in longitudinal section due to tunnel construction by shield[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(5): 585-589. (in Chinese))
    [24] 刘庆潭, 阳军生, 刘宝琛, 等. 隧道开挖地表移动计算软件SASMD的开发[J]. 岩土力学, 2005, 26(增刊): 234-238. (LIU Qing-tan, YANG Jun-sheng, LIU Bao-chen, et al. Development of software SASMD for determination of tunneling-induced ground surface movement[J]. Rock and Soil Mechanics, 2005, 26(S0): 234-238. (in Chinese))
    [25] 蔡海兵, 彭立敏, 郑腾龙. 隧道水平冻结壁强制解冻期地表沉降的预测方法[J]. 2015, 36(12): 3516-3530.(CAI Hai-bing, PENG Li-min, ZHENG Teng-long. A method for predicting ground surface settlement in the artificial thawing period of tunnel horizontally frozen wall[J]. Rock and Soil Mechanics, 2015, 36(12): 3516-3530. (in Chinese))
    [26] LEE K M, ROWE R K, LO K Y. Subsidence owing to tunnelling. I. estimating the gap parameter[J]. Canadian Geotechnical Journal, 1992, 29(6): 929-940.
    [27] TIMOSHENKO P, GOODIER J N. Theory of elasticity[M]. New York: Mc Graw-Hill, 1970.
    [28] MUSKHELISHVILI N I. Mathematical theory of elasticity[M]. Leyden: International Publishing, 1954.
    [29] GONZALEZ C, SAGASETA C. Patterns of soil deformations around tunnels-application to the extension of Madrid Metro[J]. Computers and Geotechnics, 2001, 28(6): 445-468.
    [30] FLÜEGGE W. Stresses in shells[M]. New York: Springer- Verlag, 1973.
  • 期刊类型引用(20)

    1. 张文栋,程岩,袁武立,郑龙浩. 降雨作用下黄土基岩滑坡变形特征及演化规律. 陕西水利. 2025(04): 112-114+126 . 百度学术
    2. 许博闻,兰恒星,刘世杰. 界面形态对黄土-泥岩接触面剪切力学特性影响研究. 工程地质学报. 2024(02): 448-462 . 百度学术
    3. 黄晓虎,魏兆亨,易武,郭飞,黄海峰,肖宇煌. 裂隙优势流入渗诱发堆积层滑坡浅层破坏机理研究. 岩土工程学报. 2024(06): 1136-1145 . 本站查看
    4. 赵宽耀,许强,陈婉琳,彭大雷,高登辉. 黄土塬边漫灌区土体水入渗过程研究. 岩土力学. 2024(09): 2754-2764 . 百度学术
    5. 王立朝,任三绍,李金秋. 降雨作用下古滑坡复活机理物理模拟试验研究. 中国地质灾害与防治学报. 2024(05): 21-31 . 百度学术
    6. 王诏楷. 地下水人工回灌颗粒沉积研究进展. 江淮水利科技. 2023(01): 9-14 . 百度学术
    7. 周峙,罗易,张家铭,孙狂飙. 考虑裂隙面积率的裂隙性黏土优势流双域入渗规律研究. 安全与环境工程. 2023(02): 109-118 . 百度学术
    8. 吴玮江,宋丙辉,刘迪,安亚鹏. 黄土塬区包气带水分运移特征研究. 水文地质工程地质. 2023(03): 12-22 . 百度学术
    9. 曾鹏,王宇豪,张天龙,张琳,南骁聪. 基于NSGA-Ⅱ遗传算法的黄土滑坡参数反分析与稳定性预测. 地球科学. 2023(05): 1675-1685 . 百度学术
    10. 冯乐涛,吴玮江,刘兴荣,宿星,万朝东. 黄土高原降水入渗方式与引发滑坡研究——以甘肃黄土地区为例. 科学技术与工程. 2023(14): 5937-5945 . 百度学术
    11. 许增光,李海洋,柴军瑞,曹成,陈东来. 堤坝内集中渗漏通道与周围介质水量交换研究. 水力发电学报. 2023(07): 12-23 . 百度学术
    12. 赵宽耀,许强,高登辉,刘方洲,彭大雷,陈婉琳. 坡底饱和型黄土滑坡离心模拟试验. 岩土力学. 2023(11): 3213-3223 . 百度学术
    13. 赵鲁庆,彭建兵,马鹏辉,冷艳秋,朱兴华. 黄土细观界面及其灾害效应研究初探. 工程地质学报. 2023(06): 1783-1798 . 百度学术
    14. 许强,陈婉琳,蒲川豪,袁爽,刘佳良. 基于自然的解决方案在黄土高原重大工程灾变防控中的理论与实践. 工程地质学报. 2022(04): 1179-1192 . 百度学术
    15. 宁瑞浩,冷艳秋,何芝远,李泽坤,马哲. 基于CT的黄土孔隙尺度优先流特性. 科学技术与工程. 2022(23): 9927-9936 . 百度学术
    16. 蒋小虎,黄跃廷,胡海军,陈铄,陈锐,王崇华,汪慧,康顺祥. 基于原位双环、试坑浸水试验和数值模拟反演的Q_3黄土饱和渗透系数对比研究. 岩土力学. 2022(11): 2941-2951 . 百度学术
    17. 李同录,汪颖,胡向阳,李萍,王宇. 厚层非饱和黄土中优势流和活塞流的讨论. 工程地质学报. 2022(06): 1842-1848 . 百度学术
    18. 张永双,吴瑞安,任三绍. 降雨优势入渗通道对古滑坡复活的影响. 岩石力学与工程学报. 2021(04): 777-789 . 百度学术
    19. 孙恒飞,朱兴华,成玉祥,张智锋,张卜平,蔡佳乐. 黄土优势渗流研究进展与展望. 自然灾害学报. 2021(06): 1-12 . 百度学术
    20. 侯孝东,涂国祥,邱潇,李明,王清,钱昭宇. 汉源九襄地区深厚砾石层渗透特性研究. 水利与建筑工程学报. 2020(04): 192-197 . 百度学术

    其他类型引用(22)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 42
出版历程
  • 收稿日期:  2016-06-10
  • 发布日期:  2017-09-24

目录

    /

    返回文章
    返回