• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

土工格室加筋对橡胶砂动力特性影响的试验研究

刘方成, 吴孟桃, 陈巨龙, 张云飞, 郑玉风

刘方成, 吴孟桃, 陈巨龙, 张云飞, 郑玉风. 土工格室加筋对橡胶砂动力特性影响的试验研究[J]. 岩土工程学报, 2017, 39(9): 1616-1625. DOI: 10.11779/CJGE201709009
引用本文: 刘方成, 吴孟桃, 陈巨龙, 张云飞, 郑玉风. 土工格室加筋对橡胶砂动力特性影响的试验研究[J]. 岩土工程学报, 2017, 39(9): 1616-1625. DOI: 10.11779/CJGE201709009
LIU Fang-cheng, WU Meng-tao, CHEN Ju-long, ZHANG Yun-fei, ZHENG Yu-feng. Experimental study on influence of geo-cell reinforcement on dynamic properties of rubber-sand mixtures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1616-1625. DOI: 10.11779/CJGE201709009
Citation: LIU Fang-cheng, WU Meng-tao, CHEN Ju-long, ZHANG Yun-fei, ZHENG Yu-feng. Experimental study on influence of geo-cell reinforcement on dynamic properties of rubber-sand mixtures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1616-1625. DOI: 10.11779/CJGE201709009

土工格室加筋对橡胶砂动力特性影响的试验研究  English Version

基金项目: 国家自然科学基金项目(51108177)
详细信息
    作者简介:

    刘方成(1978- ),男,博士,副教授,主要从事结构抗震和岩土动力学等方面的教学和科研。E-mail:fcliu@hut.edu.cn。

  • 中图分类号: TU43

Experimental study on influence of geo-cell reinforcement on dynamic properties of rubber-sand mixtures

  • 摘要: 橡胶砂作为轻质耗能填料在土木工程中应用越来越广泛,土工格室加筋可提高橡胶砂的抗剪强度和整体稳定性。针对关于橡胶砂或加筋橡胶砂动力特性的认知缺乏的现状,通过大尺寸循环单剪试验研究了橡胶砂分别在有无土工格室加筋情况下在水平循环荷载作用下的滞回特性。获得了加筋和非加筋橡胶砂的滞回曲线、动剪模量曲线和阻尼比曲线,并应用Stokeo-Darendeli模型对橡胶砂动力特性进行拟合,得到了加筋和非加筋橡胶砂的动力特性参数。基于对比分析,揭示了土工格室对橡胶砂动力特性影响的规律与机理。试验结果表明:①土工格室加筋能限制橡胶砂中剪切带的发展,使得橡胶砂在大应变下的滞回曲线反S形特征减弱、阻尼比增大;②由于网兜效应引起颗粒接触法向应力增大,土工格室加筋使橡胶砂动剪模量增大,且随着橡胶含量的增高而增大愈明显;③土工格室的加入降低了循环加载次数对橡胶砂动力特性的影响,并使得橡胶砂最大动剪模量随橡胶含量和竖向压力变化的速率减小。给出的土工格室加筋对橡胶砂动力特性影响的定量分析结果,可为后续研究和工程应用提供参考。
    Abstract: The rubber-sand mixtures (RSM) are more and more widely used in civil engineering as light filling and energy absorbing materials. The geo-cell can be used to reinforce RSM to improve its shear strength and stability. Little knowledge has been reported on the dynamic properties of RSM or geo-cell reinforced RSM (GCRSM). Based on this, the hysteretic properties of RSM with or without geo-cell reinforcing under cyclic horizontal loadings are investigated through large-size cyclic simple shear tests. The hysteretic curves, dynamic shear modulus curves and damping ratio curves of RSM and GCRSM are obtained by tests and fitted by the Stokeo-Darendeli model to gain parameters of dynamic properties. The comparative analysis of dynamic properties between RSM and GCRSM is carried out, and the rules and mechanisms of how the geo-cell influences the dynamic properties of RSM are verified. The test results show that: (1) Owing to the restriction of local shear band development in the specimen by the geo-cell, the S-shaping characteristics is less pronounced and the damping ratio increases under large strains when comparing GCRSM to RSM. (2) The dynamic shear modulus of RSM is increased by the geo-cell reinforcement, and the increment becomes more pronounced with addition of rubber content of RSM, which is believed due to the normal stress increment between particles in RSM caused by tuck net effect of geo-cell. (3) The influence of cycle numbers on dynamic properties of RSM decreases with use of geo-cell reinforcement. The decay velocity of the maximum dynamic shear modulus of RSM with both rubber content and vertical pressure is reduced when the geo-cell is used to reinforce RSM. Quantitative influences of geo-cell reinforcement on the dynamic characteristics of RSM are also provided for reference of the following researches and engineering applications.
  • [1] 中国人民共和国工业与信息化部. 再生资源综合利用先进适用技术目录(第二批)[EB]. 2014. (Ministry of Industry and Information Technology of PRC. Catalogue of advanced applicable technologies for comprehensive utilization of renewable resources (the 2nd batch) [EB]. 2014. (in Chinese)) http://www.miit.gov.cn/n11293472/n11293832/n12845605/n11391689/15875428.html.
    [2] FENG Z Y, SUTTER K G. Dynamic properties of granulated rubber-sand mixtures[J]. Geotechnical Testing Journal, 2000, 23(3): 338-344.
    [3] 尚守平, 岁小溪, 周志锦, 等. 橡胶颗粒-砂混合物动剪切模量的试验研究[J]. 岩土力学, 2010, 31(2): 377-381. (SHANG Shou-ping, SUI Xiao-xi, ZHOU Zhi-jin, et al. Study of dynamic shear modulus of granulated rubber-sand mixture[J]. Rock and Soil Mechanics, 2010, 31(2): 377-381. (in Chinese))
    [4] ANASTASIADIS A, SENETAKIS K, PITILAKIS K, et al. Dynamic behavior of sand/rubber mixtures: Part I effect of rubber content and duration of confinement on small-strain shear modulus and damping ratio[J]. Journal of ASTM International, 2011, 9(2): 1-17.
    [5] ANASTASIADIS A, SENETAKIS K, PITILAKIS K, et al. Dynamic behavior of sand/rubber mixtures, Part II: Effect of rubber content on G / G 0 -γ-DT curbes and volumetric threshold strain[J]. Journal of ASTM International, 2011, 9(2): 1-12.
    [6] ANASTASIADIS A, SENETAKIS K, PITILAKIS K. Small-strain shear modulus and damping ratio of sand-rubber and gravel-rubber mixtures[J]. Geotechnical and Geological Engineering, 2012, 30: 363-382.
    [7] SENETAKIS K, ANASTASIADIS A, PITILAKIS K. Dynamic properties of dry sand/rubber (SRM) and gravel/rubber (GRM) mixtures in a wide range of shearing strain amplitudes[J]. Soil Dynamics and Earthquake Engineering, 2012, 33: 38-53.
    [8] RONALD L M, LINDSAY R J, TREVOR E K. The economics of seismic isolation in buildings[J]. Earthquake Spectra, 1990, 6(2): 245-263.
    [9] 曹万林, 戴租远, 叶 炜, 等. 村镇建筑低成本隔震技术研究现状与展望[J]. 自然灾害学报, 2014, 23(6): 38-46. (CAO Wan-lin Cao, DAI Zu-yuan, YE Wei, et al. Research and prospect of low-cost isolation techniques for rural buildings[J]. Journal of Natural Disasters, 2014, 23(6): 38-46. (in Chinese))
    [10] TSANG H H. Seismic isolation by rubber-soil mixtures for developing countries[J]. Earthquake Engineering and Structural Dynamics, 2008, 37(2): 283-303.
    [11] TSANG H H, LO S H, XU X, et al. Seismic isolation for low-to-medium-rise buildings using granulated rubber-soil mixtures: numerical study[J]. Earthquake Engineering and Structure Dynamics, 2012, 41: 2009-2024.
    [12] SAMAN Y S, MONA R. Effect of seismic isolation by rubber soil mixture on seismic demand of steel moment frame in near fault area[J]. Structure and Steel, 2012, 7(10): 41-60.
    [13] ABDELHALEEM A M, EL-SHERBINY R M, LOTFY H, et al. Evaluation of rubber/sand mixtures as replacement soils to mitigate earthquake induced ground motions[C]// Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering. Paris, 2013: 3163-3166.
    [14] BANDYOPADHYAY S, SENGUPTA A, REDDY G R. Performance of sand and shred ded rubber tire mixture as a nat ural base isolator for earthquake protection[J]. Earthquake Engineering & Engineering Vibration, 2015, 14(4): 683-693.
    [15] PITILAKIS K, KARAPETROU S, TSAGDI K. Numerical investigation of the seismic response of RC buildings on soil replaced with rubber-sand mixtures[J]. Soil Dynamics and Earthquake Engineering, 2015, 79: 237-252.
    [16] 岁小溪. 橡胶颗粒-砂混合物隔震性能研究[D]. 长沙: 湖南大学土木工程学院, 2009. (SUI Xiao-xi. Study on isolation performance of rubber sand mixtures[D]. Changsha: College of Civil Engineering, Hunan University, 2009. (in Chinese))
    [17] 刘方成, 任东滨, 刘 娜, 等. 土工格室加筋橡胶砂垫层隔震效果数值分析[J]. 土木工程学报, 2015, 47(增刊2): 1-7. (LIU Fang-cheng, REN Dong-bin, LIU Na, et al. Numerical simulation on the isolation effect of geocell reinforced rubber-sand mixture cushion earthquake base isolator[J]. China Civil Engineering Journal, 2015, 47(S2): 109-118. (in Chinese))
    [18] LESHCHINSKY B, LING H. Effects of geocell confinement on strength and deformation behavior of gravel[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2013, 139(2): 340-352.
    [19] 邓 鹏, 郭 林, 蔡袁强, 等. 考虑填料-土工格室相互作用的加筋路堤力学响应研究[J]. 岩石力学与工程学报, 2015, 34(3): 621-630. (DENG Peng, GUO Lin, CAI Yuan-qiang, et al. Mechanical behavior of reinforced embankment considering interaction between gravel and geo-cell[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 621-630. (in Chinese))
    [20] 尚守平, 刘方成, 杜运兴, 等. 应变累积对黏土动剪模量和阻尼比影响的试验研究[J]. 岩土力学, 2006, 27(5): 683-688. (SHANG Shou-ping, LIU Fang-cheng, DU Yun-xing. Experimental study on effect of shear strain accumulation on dynamic shear modulus and damping ratio of clay soil[J]. Rock and Soil Mechanics, 2006, 27(5): 683-688. (in Chinese))
    [21] ISHIHARA K. Modeling of stress-strain relations of soils in cyclic loading[C]// Proceedings of 5th Conference on Numerical Methods in Geomechanics. Nagoya, 1985: 373-380.
    [22] VUCETIC M. Normalized behavior of clay under irregular cyclic loading[J]. Canada Geotechnical Journal, 1990, 27: 29-46.
    [23] DARENDELI M B, STOKOE K H. Dynamic properties of soils subjected to the 1994 Northridge Earthquake[R]. Austin: Civil Engineering Department, University of Texas at Austin, 1997.
    [24] 李元海, 朱合华, 靖洪文, 上野胜利. 基于数字照相的砂土剪切变形模式的试验研究[J]. 同济大学学报(自然科学版), 2007, 35(5): 685-689. (LI Yuan-hai, ZHU He-hua, JING Hong-wen, et al. Experimental investigation of shear deformation patterns in sands based on digital image correlation[J]. Journal of Tongji University (Natural Science), 2007, 35(5): 685-689. (in Chinese))
    [25] 左永振, 程展林, 赵 娜. 千枚岩碎屑土三轴试验剪切带扩展性状的CT研究[J]. 岩土工程学报, 2015, 37(8): 1524-1531. (ZUO Yong-zhen, CHENG Zhan-lin, ZHAO Na. Expansion mechanism of shear bands in phyllite detritus soil by CT technology[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1524-1531. (in Chinese))
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-26
  • 发布日期:  2017-09-24

目录

    /

    返回文章
    返回