• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

不同卸荷速率下大理岩破裂时效特性与机理研究

李夕兵, 陈正红, 曹文卓, 陶明, 周健

李夕兵, 陈正红, 曹文卓, 陶明, 周健. 不同卸荷速率下大理岩破裂时效特性与机理研究[J]. 岩土工程学报, 2017, 39(9): 1565-1574. DOI: 10.11779/CJGE201709003
引用本文: 李夕兵, 陈正红, 曹文卓, 陶明, 周健. 不同卸荷速率下大理岩破裂时效特性与机理研究[J]. 岩土工程学报, 2017, 39(9): 1565-1574. DOI: 10.11779/CJGE201709003
LI Xi-bing, CHEN Zheng-hong, CAO Wen-zhuo, TAO Ming, ZHOU Jian. Time-effect properties and mechanisms of marble failure under different unloading rates[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1565-1574. DOI: 10.11779/CJGE201709003
Citation: LI Xi-bing, CHEN Zheng-hong, CAO Wen-zhuo, TAO Ming, ZHOU Jian. Time-effect properties and mechanisms of marble failure under different unloading rates[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1565-1574. DOI: 10.11779/CJGE201709003

不同卸荷速率下大理岩破裂时效特性与机理研究  English Version

基金项目: 国家自然科学基金项目(11472311); 国家重点研发项目(2016YFC0600706)
详细信息
    作者简介:

    李夕兵(1962- ),男,博士,1983年毕业于中南矿冶学院采矿专业,现任教授,博士生导师,主要从事采矿与岩土工程方面的教学和科研工作。E-mail:xbli@mail.csu.edu.cn。

    通讯作者:

    陈正红,E-mail:chenzhenghong@csu.edu.cn

  • 中图分类号: TU45

Time-effect properties and mechanisms of marble failure under different unloading rates

  • 摘要: 巷道开挖过程中卸荷速率对岩体破裂特性有显著影响,且破裂特性表现出明显的时间效应。针对岩体在卸荷条件下的受力特征,利用颗粒流程序,对脆性大理岩进行围压卸载数值模拟,研究不同卸荷速率下卸荷结束瞬间和卸荷后持续点的岩石试样破裂特性和机理。结果表明:围压卸载过程中,卸荷变形率Δ˙εi随卸荷速率的增大而减小,且侧向变形比轴向变形更敏感;在卸荷结束瞬间,微裂纹主要集中在试样上下端部并形成剪切破裂带,其中张拉裂纹数目是剪切裂纹的3~6倍,试样的破裂程度S1随卸荷速率的增大呈指数递减规律变化;在卸荷后持续点,卸荷速率较慢的情况下岩石试样破坏形式为宏观剪切破裂面,卸荷速率较快的情况下岩石试样破坏形式为块体剥落及上下端部颗粒(块体)弹射,试样的破裂程度S2随卸荷速率的增大呈指数递增规律发展;卸荷速率越快,达到卸荷后持续点时,试样累计释放的颗粒动能越大,岩爆程度越大。
    Abstract: In the process of tunnel excavation, the failure properties of rock mass are obviously affected by unloading rates, and the failure properties show a clear time effect. Considering the stress characteristics of rock mass under unloading, the unloading tests on brittle marble are simulated by the particle flow code (PFC), then the failure properties and mechanisms at the unloading finished point and the continuous point are analyzed. The numerical modeling results show that the deformation rate decreases with the increasing unloading rate in the process of unloading. Moreover the lateral deformation is more sensitive than the axial deformation. At the unloading finished moment, most micro cracks formed in the samples are distributed at the top and bottom sides of the sample, and the number of tensile cracks is about 3~6 times more than that of shear cracks, then these cracks form shear fracture bands. Moreover, at this moment, the fracture degree of samples decreases exponentially with the increase of unloading rate. At the subsequent moment from the unloading finished, the failure mode of macroscopic shear fracture occurs at low unloading rates, while the failure mode turns to block spalling and particle (block) ejection at high unloading rates. Furthermore, at the subsequent moment from the unloading finished, the fracture degree increases exponentially with the increase of unloading rate. When reaching the subsequent moment from the unloading finished, the faster the unloading rates, the greater the kinetic energy release, and the rock burst is more violent.
  • [1] 殷志强, 李夕兵, 金解放, 等. 围压卸载速度对岩石动力强度与破碎特性的影响[J]. 岩土工程学报, 2011, 33(8): 1296-1301. (YIN Zhi-qiang, LI Xi-bing, JIN Jie-fang, et al. Effects of unloading rates of confining pressure on dynamic strength and fragmentation characteristics of rock under impact loads[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1296-1301. (in Chinese))
    [2] 陈卫忠, 吕森鹏, 郭小红, 等. 脆性岩石卸围压试验与岩爆机理研究[J]. 岩土工程学报, 2010, 32(6): 963-969. (CHEN Wei-zhong, LÜ Sen-peng, GUO Xiao-hong, et al. Unloading confining pressure for brittle rock and mechanism of rock burst[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 963-969. (in Chinese))
    [3] 朱杰兵, 汪 斌, 杨火平, 等. 页岩卸荷流变力学特性的试验研究[J]. 岩石力学与工程学报, 2007(增刊2): 4552-4556. (ZHU Jie-bing, WANG Bin, YANG Huo-ping, et al. Experimental study on rheological mechanical properties of shale under unloading condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2007(S2): 4552-4556. (in Chinese))
    [4] 邱士利, 冯夏庭, 张传庆, 等. 不同卸围压速率下深埋大理岩卸荷力学特性试验研究[J]. 岩石力学与工程学报, 2010, 29(9): 1807-1817. (QIU Shi-li, FENG Xa-ting, ZHANG Chuan-qing, et al. Experimental research on mechanical properties of deep-buried marble under different unloading rates of confining pressures[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1807-1817. (in Chinese))
    [5] 王在泉, 张黎明, 孙 辉, 等. 不同卸荷速度条件下灰岩力学特性的试验研究[J]. 岩土力学, 2011, 32(4): 1045-1050. (WANG Zai-quan, ZHANG Li-ming, SUN Hui, et al. Experimental study of mechanical properties of limestone under different unloading velocities[J]. Rock and Soil Mechanics, 2011, 32(4): 1045-1050. (in Chinese))
    [6] 李天斌, 王兰生. 卸荷应力状态下玄武岩变形破坏特征的试验研究[J]. 岩石力学与工程学报, 1993, 12(4): 321-327. (LI Tian-bin, WANG Lan-sheng. Experimental research on deformation and failure characteristics of basalt under unloading stress condition[J]. Chinese Journal of Rock Mechanics and Engineering, 1993, 12(4): 321-327. (in Chinese))
    [7] 黄润秋, 黄 达. 高地应力条件下卸荷速率对锦屏大理岩力学特性影响规律试验研究[J]. 岩石力学与工程学报, 2010, 29(1): 21-33. (HUANG Run-qiu, HUANG Da. Experimental research on affection laws of unloading rates on mechanical properties of Jinping marble under high geostress[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(1): 21-33. (in Chinese))
    [8] 姜德义, 范金洋, 陈 结, 等. 围压卸载速率对盐岩扩容损伤影响研究[J]. 岩石力学与工程学报, 2013(增刊2): 3154-3159. (JIANG De-yi, FAN Jin-yang, CHEN Jie, et al. Research on effect of unloading rate of confining pressure on capacity expansion damage of salt rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2013(S2): 3154-3159. (in Chinese))
    [9] ZHAO X G, WANG J, CAI M, et al. Influence of unloading rate on the strainburst characteristics of Beishan granite under true-triaxial unloading conditions[J]. Rock Mechanics and Rock Engineering, 2014, 47(2): 467-483.
    [10] 何满潮, 赵 菲, 杜 帅, 等. 不同卸载速率下岩爆破坏特征试验分析[J]. 岩土力学, 2014, 35(10): 2737-2747. (HE Man-chao, ZHAO Fei, DU Shuai, et al. Rockburst characteristics based on experimental tests under different unloading rates[J]. Rock and Soil Mechanics, 2014, 35(10): 2737-2747. (in Chinese))
    [11] Itasca Consulting Group Inc. PFC2D (particle flow code in 2 dimensions) (Version 3.1) [M]. Minneapolis: Itasca Consulting Group Inc, 2004.
    [12] YOON J S, HOU M Z, JEON S. Simulations of rock strength, dilatancy and damage under uniaxial compressive load using bonded particle models[J]. Journal of Interventional Cardiology, 2010, 25(3): 253-261.
    [13] 黄彦华, 杨圣奇. 非共面双裂隙红砂岩宏细观力学行为颗粒流模拟[J]. 岩石力学与工程学报, 2014, 33(8): 1644-1653. (HUANG Yan-hua, YANG Shen-qi. Particle flow simulation of macro-and meso-mechanical behavior of red sandstone containing two pre-existing non-coplanar fissures[J]. Journal of Rock Mechanics and Engineering, 2014, 33(8): 1644-1653. (in Chinese))
    [14] FAKHIMI A, CARVALHO F, ISHIDA T, et al. Simulation of failure around a circular opening in rock[J]. International Journal of Rock Mechanics & Mining Sciences, 2002, 39(2): 507-515.
    [15] POTYONDY D O, CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(8): 1329-1364.
    [16] LI X, CAO W, ZHOU Z, et al. Influence of stress path on excavation unloading response[J]. Tunnelling & Underground Space Technology, 2014, 42(42): 237-246.
    [17] 李宏哲, 夏才初, 闫子舰, 等. 锦屏水电站大理岩在高应力条件下的卸荷力学特性研究[J]. 岩石力学与工程学报, 2007, 26(10): 2104-2109. (LI Hong-zhe, XIA Cai-chu, YAN Zi-jian, et al. Study on marble unloading mechanical properties of jinping hydropower station under high geostress conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(10): 2104-2109. (in Chinese))
    [18] DIEDERICHS M S. The 2003 Canadian Geotechnical Colloquium: mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunneling[J]. Canadian Geotechnical Journal, 2007, 44(9): 1082-1116.
    [19] 杨艳霜, 周 辉, 张传庆, 等. 大理岩单轴压缩时滞性破坏的试验研究[J]. 岩土力学, 2011, 32(9): 2714-2720. (YANG Yan-shuang, ZHOU Hui, ZHANG Chuan-qing, et al. Experimental investigation on time-lag failure properties of marble under uniaxial compressive test[J]. Rock & Soil Mechanics, 2011, 32(9): 2714-2720. (in Chinese))
    [20] LINKOV A M. Rockbursts and the instability of rock masses[J]. International Journal of Rock Mechanics & Mining Science & Geomechanics Abstracts, 1996, 33(7): 727-732.
    [21] MANOUCHEHRIAN A, CAI M. Simulation of unstable rock failure under unloading conditions[J]. Canadian Geotechnical Journal, 2015, 53(1): 22-34.
    [22] ZHAO X G, CAI M. Influence of specimen height-to-width ratio on the strainburst characteristics of Tianhu granite under true-triaxial unloading conditions[J]. Canadian Geotechnical Journal, 2014, 52(7): 890-902.
    [23] 张镜剑, 傅冰骏. 岩爆及其判据和防治[J]. 岩石力学与工程学报, 2008, 27(10): 20-34. (ZHANG Jing-jian, FU Bing-jun. Rockburst and its criteria and control[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(10): 20-34. (in Chinese))
    [24] 陈炳瑞, 冯夏庭, 明华军, 等. 深埋隧洞岩爆孕育规律与机制:时滞型岩爆[J]. 岩石力学与工程学报, 2012, 31(3): 561-569. (CHEN Bing-rui, FENG Xia-ting, MING Hua-jun, et al. Evolution law and mechanism of rock burst in deep tunnel: time delayed rock burst[J]. Chinese Journal of Rock Mechanics & Engineering, 2012, 31(3): 561-569. (in Chinese))
    [25] 于 群, 唐春安, 李连崇, 等. 基于微震监测的锦屏二级水电站深埋隧洞岩爆孕育过程分析[J]. 岩土工程学报, 2014, 36(12): 2315-2322. (YU Qun, TANG Chun-an, LI Lian-chong, et al. Nucleation process of rockbursts based on microseismic monitoring of deep-buried tunnels for Jinping II Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2315-2322. (in Chinese))
  • 期刊类型引用(0)

    其他类型引用(3)

计量
  • 文章访问数:  370
  • HTML全文浏览量:  3
  • PDF下载量:  301
  • 被引次数: 3
出版历程
  • 收稿日期:  2016-05-29
  • 发布日期:  2017-09-24

目录

    /

    返回文章
    返回