• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于范德堡法的非饱和土电阻率测试方法

冯怀平, 马德良, 王志鹏, 常建梅

冯怀平, 马德良, 王志鹏, 常建梅. 基于范德堡法的非饱和土电阻率测试方法[J]. 岩土工程学报, 2017, 39(4): 690-696. DOI: 10.11779/CJGE201704014
引用本文: 冯怀平, 马德良, 王志鹏, 常建梅. 基于范德堡法的非饱和土电阻率测试方法[J]. 岩土工程学报, 2017, 39(4): 690-696. DOI: 10.11779/CJGE201704014
FENG Huai-ping, MA De-liang, WANG Zhi-peng, CHANG Jian-mei. Measurement of resistivity of unsaturated soils using van der Pauw method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 690-696. DOI: 10.11779/CJGE201704014
Citation: FENG Huai-ping, MA De-liang, WANG Zhi-peng, CHANG Jian-mei. Measurement of resistivity of unsaturated soils using van der Pauw method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 690-696. DOI: 10.11779/CJGE201704014

基于范德堡法的非饱和土电阻率测试方法  English Version

基金项目: 国家自然科学基金项目(51478279)
详细信息
    作者简介:

    冯怀平(1975- ),男,副教授,主要从事非饱和土测试及数值模拟等方面的教学和科研。E-mail: fenghuaiping@stdu.edu.cn。

Measurement of resistivity of unsaturated soils using van der Pauw method

  • 摘要: 电阻率法是实现无干扰土体压实度及水分迁移测试的一种有效方法。范德堡法(vdP法)广泛应用于半导体等材料的电阻率测量领域,有较高的精度,将该方法引入非饱和土电阻率测试,研发了一种只接触土体表面而不破坏土体结构的土体电阻率测试装置及方法,装置由钛电极片、交流恒流源、电压采集及数据处理系统4部分组成。采用此装置对某粉黏土的电阻率进行了测试研究,验证了电极尺寸、试样高度以及温度对于测试精度的影响;测试了不同含水率、压实度下土体电阻率的变化规律,试验表明所提供的测试方法具有精度高、测试稳定、对土样无干扰等优点。
    Abstract: The electrical resistivity method is the main non-destructive method for measuring compaction and moisture migration of the unsaturated soils. The van der Pauw method is a well established technique for measuring the resistivity of semiconductor materials with high accuracy and suitable for a wide range of materials. The present investigation is focused on the development of an apparatus to measure the electrical resistivity and sample properties of soils based on the van der Pauw method. The proposed device consists of four parts: (1) a sensor head, which includes four Ti electrodes, (2) an AC constant current source which sends current into soils, (3) dynamic strain indicator which detects the voltage between other two electrodes, and (4) data processing system. The device is evaluated through tests on clay samples. The factors which affect the measurement accuracy, such as depth of samples, size of electrodes, temperature, are tested. By using the proposed method, the relationship among the electrical resistivity, water content and compaction of samples is investigated. The main advantages of the proposed device are high accuracy, measurement stability and no disturbance.
  • [1] RICHARD G, SÉGER M, BESSON A, et al. Electrical resistivity to assess soil properties[M]. Berlin: Springer Netherlands, 2014.
    [2] QAZI W, MEMON M B. Effects of shear strength properties on electrical resistivity of compacted laterite soil: a conceptual model[C]// Malaysian Universities Conference on Engineering and Technology. Malaysia, 2015.
    [3] ASIF A R, ALI S S, NOREEN N, et al. Correlation of electrical resistivity of soil with geotechnical engineering parameters at Wattar area district Nowshera, Khyber Pakhtunkhwa, Pakistan[J]. Journal of Himalayan Earth Sciences, 2016, 49(1): 124-130.
    [4] WYCHOWANIAK D, ZAWADZKI Ł, LECH M. Application of column tests and electrical resistivity methods for leachate transport monitoring[J]. Annals of Warsaw University of Life Sciences Land Reclamation, 2015, 47(3): 237-247.
    [5] BRAKORENKO N N, KOROTCHENKO T V. Impact of petroleum products on soil composition and physical- chemical properties[J]. Earth and Environmental Science, 2016, 33(1): 012028.
    [6] 韩立华, 刘松玉, 杜延军. 一种检测污染土的新方法——电阻率法[J]. 岩土工程学报, 2006, 28(8): 1028-1032. (HAN Li-hua, LIU Song-yu, DU Yan-Jun. New method for testing contaminated soil—electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1028-1032. (in Chinese))
    [7] ARCHIE G E. Electrical resistivity an aid in core-analysis interpretation[J]. Aapg Bulletin American Association of Petroleum Geologists, 1942, 31(2): 350-366.
    [8] CORWIN D L, LESCH S M. Apparent soil electrical conductivity measurements in agriculture[J]. Computers & Electronics in Agriculture, 2005, 46(1/2/3): 11-43.
    [9] LEE J K, SHANG J Q, LEE J K, et al. Influencing factors on electrical conductivity of compacted kaolin clay[J]. Geomechanics & Engineering, 2011, 3(2): 131-151.
    [10] KIBRIA G, HOSSAIN M S. Investigation of geotechnical parameters affecting electrical resistivity of compacted clays[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2012, 138(12): 1520-1529.
    [11] ABIDIN M H Z, SAAD R, AHMAD F, et al. Correlation analysis between field electrical resistivity value (ERV) and basic geotechnical properties (BGP)[J]. Soil Mechanics & Foundation Engineering, 2014, 51(3): 117-125.
    [12] ZHOU M, WANG J, CAI L, et al. Laboratory investigations on factors affecting soil electrical resistivity and the measurement[J]. IEEE Transactions on Industry Applications, 2015, 51(6): 5358-5365.
    [13] SEO S Y, HONG S S, LEE J S. Electrical resistivity of soils due to cyclic freezing and thawing[C]// ISCORD 2013: Planning for Sustainable Cold Regions. Anchorage, 2015.
    [14] KANG M, LEE J S. Evaluation of the freezing-thawing effect in sand-silt mixtures using elastic waves and electrical resistivity[J]. Cold Regions Science & Technology, 2015, 113: 1-11.
    [15] 于小军, 刘松玉. 电阻率指标在膨胀土结构研究中的应用探讨[J]. 岩土工程学报, 2004, 26(3): 393-396. (YU Xiao-jun, LIU Song-yu. Researches on application of electrical resistivity indices to the microstructure of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(3): 393-396. (in Chinese))
    [16] 查甫生, 刘松玉, 杜延军, 等. 基于电阻率法的膨胀土吸水膨胀过程中结构变化定量研究[J]. 岩土工程学报, 2008, 30(12): 1832-1839. (ZHA Fu-sheng, LIU Song-yu, DU Yan-jun, et al. Quantitative research on microstructures of expansive soils during swelling using electrical resistivity measurements[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1832-1839. (in Chinese))
    [17] 查甫生, 刘松玉, 杜延军, 等. 基于电阻率的非饱和土基质吸力预测[J]. 岩土力学, 2010(3): 1003-1008. (ZHA Fu-sheng, LIU Song-yu, DU Yan-jun, et al. Prediction of matric suction of unsaturated soil based on electrical resistivity[J]. Rock & Soil Mechanics, 2010(3): 1003-1008. (in Chinese))
    [18] 缪林昌, 严明良, 崔 颖. 重塑膨胀土的电阻率特性测试研究[J]. 岩土工程学报, 2007, 28(9): 1413-1417. (MIAO Lin-chang, YAN Ming-liang, CUI Ying. Studies on electrical resistivity of remold expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2007, 28(9): 1413-1417. (in Chinese))
    [19] RAO B H, SINGH D N. Establishing soil-water characteristic curve of a fine-grained soil from electrical measurements[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(5): 751-754.
    [20] 查甫生, 刘松玉, 杜延军, 等. 电阻率法评价膨胀土改良的物化过程[J]. 岩土力学, 2009, 30(6): 1711-1718. (ZHA Fu-sheng, LIU Song-yu, DU Yan-jun, et al. Evaluation of physicochemical process in stabilized expansive soils using electrical resistivity method[J]. Rock & Soil Mechanics, 2009, 30(6): 1711-1718. (in Chinese))
    [21] ASTM G57—06—2012. American society for testing and materials, standard test method for field measurement of soil resistivity using the wenner four-electrode method[S]. 2012.
    [22] ISLAM T, CHIK Z, MUSTAFA M M, et al. Modeling of electrical resistivity and maximum dry density in soil compaction measurement[J]. Environmental Earth Sciences, 2012, 67(67): 1299-1305.
    [23] SON Y, OH M, LEE S. Estimation of soil weathering degree using electrical resistivity[J]. Environmental Earth Sciences, 2009, 59(6): 1319-1326.
    [24] 刘国华, 王振宇, 黄建平. 土的电阻率特性及其工程应用研究[J]. 岩土工程学报, 2004, 26(1): 83-87. (LIU Guo-hua, WANG Zhen-yu, HUANG Jian-ping. Research on electrical resistivity feature of soil and it's application[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 83-87. (in Chinese))
    [25] DIAS C A. Analytical model for a polarizable medium at radio and lower frequencies[J]. Journal of Geophysical Research Atmospheres, 1972, 77(26): 4945-4956.
    [26] ZHUO W, LI M. A detector for plant electrical conductivity based on four-electrode method[J]. Sensor Letters, 2010, 8(1): 122-127.
    [27] BURGER H R, BURGER D C. Exploration geophysics of the shallow subsurface[M]. Upper Saddle River: Prentice Hall, 1992.
    [28] TELFORD W M, GLEDART L P, SHERIFF R E. Applied geophysics[M]. 2nd ed. Cambridge: Cambridge University Press, 1990.
    [29] 周仲华, 郑 龙, 孙 博. 土遗址墙体含水率与电阻率关系研究[J]. 岩石力学与工程学报, 2009, 28(增刊2): 4054-4058. (ZHOU Zhong-hua, ZHENG Long, SUN Bo. Research on relationships between water content and resistivity of earthen ruin walls[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S2): 4054-4058. (in Chinese))
    [30] MUNO-ZCASTELBLANCO J, PEREIRA J M, DELAGE P, et al. The influence of changes in water content on the electrical resistivity of a natural unsaturated loess[J]. Astm Geotechnical Testing Journal, 2013, 35(12/13): 1927-1934.
    [31] VAN DER P. Method of measuring specific resistivity and hall effect of diks of arbitrary shape[J]. Phil Res Rev, 1958(13): 1-9.
    [32] VAN DER P. A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape[J]. Phil Tech Rev, 1958(20): 220-223.
    [33] NÁHLÍK J, KAŠPÁRKOVÁ I, FITL P. Study of quantitative influence of sample defects on measurements of resistivity of thin films using van der Pauw method[J]. Measurement, 2011, 44(10): 1968-1979.
    [34] JONATHAN D Weiss. A derivation of the van der Pauw formula from electrostatics[J]. Solid-State Electronics, 2008(52): 91-98.
    [35] KASL C, HOCH M J R. Effects of sample thickness on the van der Pauw technique for resistivity measurements[J]. Rev Sci Instrum, 2005(76): 33907-33911
    [36] SHEETS K R, HENDRICKX J M H. Non-invasive soil water content measurement using electromagnetic induction[J]. Water Resour Res, 1995, 31: 2401-2409.
    [37] BAI W, KONG L, GUO A. Effects of physical properties on electrical conductivity of compacted lateritic soil[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2013, 5(5): 406-411.
计量
  • 文章访问数:  503
  • HTML全文浏览量:  2
  • PDF下载量:  393
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-12
  • 发布日期:  2017-05-19

目录

    /

    返回文章
    返回