Stochastic analysis of contact force between geomembrane and particle underlayer based on principle of maximum entropy
-
摘要: 土石坝坝面防渗土工膜与其下的垫层颗粒间接触状态存在较大的随机性和无序性,一直是定量分析土石坝面膜防渗结构可靠性的一个难点。基于最大熵原理对土工膜与垫层颗粒之间接触力随机状态进行了分析演绎,提出了一种研究不同垫层颗粒状态(粒径级配、尖锐程度等)、不同压力条件下土工膜与垫层颗粒间接触力大小分布的数学方法,利用该方法分别从理论上推导出了土工膜与均一圆球颗粒垫层之间接触力大小概率密度分布函数以及土工膜与级配圆球颗粒垫层之间的接触力大小概率密度分布函数,理论推导表明在垫层颗粒随机排布的条件下,土工膜与垫层颗粒间接触力大小分布满足以压力和单位面积接触点数为参数的指数分布规律,最后通过室内试验,利用压敏纸测量了上述两种垫层颗粒与土工膜之间的接触力大小,统计每个接触点上接触力后发现与理论推导的结果基本一致。Abstract: In order to quantitatively analyze the reliability of geomembrane surface barrier on rockfill dam, a stochastic method based on the principle of the maximum entropy is employed to analyze the random contact between geomembrane and particle underlayer. The distribution of contact force between geomembrane and particle underlayers with different particle sizes and sharpnesses under different pressures can be obtained theoretically using this method. Two simple cases are also given to show the detailed process of mathematical derivation of this method. The distribution of contact force is exponential according to the proposed method, and the particle size and pressure are the most two important factors to affect the distribution of contact force. The proposed method is then verified by a series of laboratory experiments using the pressure-sensitive film, and it is a reliable tool to measure the contact force at each contact point. The results show that the distribution of contact force from the proposed method is in good agreement with the test data.
-
Keywords:
- geomembrane /
- particle underlayer /
- contact force /
- stochastic analysis
-
[1] 束一鸣, 张利新, 袁全义, 等. 西霞院反调节水库土石坝膜防渗工艺[J]. 水利水电科技进展, 2009, 29(6): 70-73. (SHU Yi-ming, ZHANG Li-xin, YUAN Quan-yi, et al. Geomembrane seepage control techniques of Xixiayuan earth-rock dam[J]. Advances in Science and Technology of water resources, 2009, 29(6): 70-73. (in Chinese)) [2] DANIEL P, LAURENT P, PATRICE M. Feedback and guidelinesfor geomembrane lining systems of mountain reservoirs in France[J]. Geotextiles and Geomembranes, 2011, 29(5): 415-424. [3] CAZZUFFI D. The use of geomembranes in Italian dams[J]. International Water Power & Dam Construction, 1987, 39(6): 17-21. [4] 李岳军, 周建平, 何世海, 等. 抽水蓄能电站水库土工膜防渗技术的研究和应用[J]. 水力发电, 2006, 32(3): 67-69, 80. (LI Yue-jun, ZHOU Jian-ping, HE Shi-hai, et al. Study on and application of geotech-membrane in the leakage prevention works of reservoirs of the pumped storage power station[J]. Water Power, 2006, 32(3): 67-69, 80. (in Chinese)) [5] 滕兆明, 束一鸣, 吴海民, 等. 无沙混凝土垫层配合比及力学性能试验研究[J]. 人民黄河, 2012, 34(10): 139-141. (TENG Zhao-ming, SHU Yi-ming, WU Hai-min, et al. Study of test on mixed proportions design and mechanical properties of no fines concrete cushion layer[J]. Yellow River, 2012, 34(10): 139-141. (in Chinese)) [6] 土工合成材料测试规程[S]. 北京: 中国水利水电出版社, 1999: 29-33. (Code for test and measurement of geosynthetics[S]. Beijing: China Water&Power Press, 1999: 29-33. (in Chinese)) [7] WANG Deng-ming, ZHOU You-he. Statistics of contract force network in dense granular matter[J]. Particuology, 2010, 8(3): 133-140. [8] CHAN S H, NGAN A H W, Statistical distribution of forces in stressed 2-D low-density materials with random microstructures[J]. Mechanics of Materials, 2006, 38(8): 1199-1212. [9] ROTHENBURG L, KRUYT N P. Micromechanical definition of an entropy for quasi-static deformation of granular materials [J]. Journal of the Mechanics and Physics of Solids, 2009, 57(12): 634-655. [10] NGAN A H W. Mechanical analog of temperature for the description of force distribution in static granular packings[J]. Phys Rev E, 2003, 68(20): 1-10. [11] SHANNON C E. A mathematical theory of communication[J]. Bell System Technical, 1948: 379-423. [12] BERTSEKAS D P. Nonlinear programming[M]. 2nd ed. Cambridge, MA: Athena Scientific, 1999. [13] 刘国祥, 何志芳, 杨纪龙. 概率论与数理统计[M]. 兰州:甘肃教育出版社, 2002. (LIU Guo-xiang, HE Zhi-fang, YANG Ji-long. Probability theory and mathematical statistics[M]. Lanzhou: Gansu Education Press, 2002. (in Chinese)) -
期刊类型引用(18)
1. 柴永进,渠根启,潘童. 考虑降雨作用下公路高边坡变形预测的ELM方法及工程应用. 科技创新与应用. 2024(01): 98-102 . 百度学术
2. 崔靖奇,吴顺川,程海勇,王涛,姜关照,浦仕江,任子健. 滇中引水软岩隧洞围岩位移时序预测. 清华大学学报(自然科学版). 2024(07): 1215-1225 . 百度学术
3. 马恩临,赖金星,王立新,汪珂,雷升祥,李储军,邱军领. 基于控制区间牵引算法的地下施工变形预测. 岩土力学. 2023(02): 577-594 . 百度学术
4. 哈吉章,杨良义,肖旺槟,李晶生,彭乙芹. 基于组合预测模型的地铁车站地表沉降研究. 广东土木与建筑. 2023(02): 49-53 . 百度学术
5. 王述红,董福瑞. 基于变形预测和参数反演的山岭隧道围岩稳定性分析. 岩土工程学报. 2023(05): 1024-1035 . 本站查看
6. 成睿,李素敏,韩追,毛嘉骐,李彦臣. 时序InSAR与GWO-VMD相结合的地表沉降预测. 贵州大学学报(自然科学版). 2023(03): 78-85 . 百度学术
7. 李永靖,王松,刘维青,文成章,高航. 某隧道穿越富水断层破碎带围岩大变形成因分析及稳定性预测. 矿业研究与开发. 2023(05): 84-90 . 百度学术
8. 侯明华,袁颖,杨丛铭,李云鹏,黄虎城. 基于麻雀搜索算法优化Elman残差自校正地面沉降预测模型. 科学技术与工程. 2023(13): 5470-5480 . 百度学术
9. 付宏渊,刘忠伟,邱祥,罗震宇. 红黏土路堤填挖交界段工后沉降变形研究. 交通科学与工程. 2023(02): 1-7+15 . 百度学术
10. 陈城,史培新,王占生,贾鹏蛟. 基于融合多注意力机制的深度学习的盾构荷载预测方法. 东北大学学报(自然科学版). 2023(11): 1631-1637+1646 . 百度学术
11. 尹宏,王述红,董卓然,侯钦宽. 引入因子分析的结构面粗糙度RBF复合参数模型. 岩土工程学报. 2022(04): 721-730 . 本站查看
12. 林广东,何军,申小军,徐龙飞,裴莉莉,余婷. 基于随机森林的隧道建成初期累计沉降量预测. 计算技术与自动化. 2022(01): 160-163 . 百度学术
13. 宋光浩. 基于数据插值预测路基沉降及误差分析. 地理空间信息. 2022(04): 175-177 . 百度学术
14. 叶勇超,闫超德,罗先学,张瑞峰,袁观杰. 时序InSAR郑州地铁沿线地面沉降分析. 遥感学报. 2022(07): 1342-1353 . 百度学术
15. 胡仕明,杨伟红,李涛,李昕堃. 公路隧道洞口顺层边坡变形规律分析. 岩土工程技术. 2022(06): 477-482 . 百度学术
16. 王述红,董福瑞,朱宝强,刘欢,张泽. 山岭隧道围岩参数智能反演及稳定性分析. 应用基础与工程科学学报. 2021(05): 1171-1185 . 百度学术
17. 朱宝强,王述红,张泽,王鹏宇,董福瑞. 基于时间序列与DEGWO-SVR模型的隧道变形预测方法. 浙江大学学报(工学版). 2021(12): 2275-2285 . 百度学术
18. 柳明. 基于划分沉降区域的基坑沉降预测方法. 测绘标准化. 2021(04): 35-38 . 百度学术
其他类型引用(14)