• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

水力加砂压裂试验装置的研制及应用

徐峰, 杨春和, 郭印同, 王磊, 魏元龙, 侯振坤, 卞晓冰

徐峰, 杨春和, 郭印同, 王磊, 魏元龙, 侯振坤, 卞晓冰. 水力加砂压裂试验装置的研制及应用[J]. 岩土工程学报, 2016, 38(1): 187-192. DOI: 10.11779/CJGE201601021
引用本文: 徐峰, 杨春和, 郭印同, 王磊, 魏元龙, 侯振坤, 卞晓冰. 水力加砂压裂试验装置的研制及应用[J]. 岩土工程学报, 2016, 38(1): 187-192. DOI: 10.11779/CJGE201601021
XU Feng, YANG Chun-he, GUO Yin-tong, WANG Lei, WEI Yuan-long, HOU Zheng-kun, BIAN Xiao-bing. Development and application of experimental apparatus of hydraulic sand fracturing[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 187-192. DOI: 10.11779/CJGE201601021
Citation: XU Feng, YANG Chun-he, GUO Yin-tong, WANG Lei, WEI Yuan-long, HOU Zheng-kun, BIAN Xiao-bing. Development and application of experimental apparatus of hydraulic sand fracturing[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 187-192. DOI: 10.11779/CJGE201601021

水力加砂压裂试验装置的研制及应用  English Version

基金项目: 国家自然科学基金项目(51574218); 中国科学院战略性先导科技专项(B类)(XDB10040200); 中国石化科技攻关项目:涪陵区块页岩气层改造技术研究(P14091); 国家高技术研究发展计划(“863”)项目(2013AA064800)
详细信息
    作者简介:

    徐 峰(1991- ),男,四川宜宾人,博士研究生,主要从事水力压裂试验与理论研究。

Development and application of experimental apparatus of hydraulic sand fracturing

  • 摘要: 为研究非常规天然气开采过程中支撑剂的运移规律,自主研发水力加砂压裂试验装置。该装置主要由岩石三轴试验机、压裂液泵压伺服控制系统、声发射监测系统3个部分组成,且具有以下特点:①可以模拟不同地应力、不同排量条件下携砂压裂试验;②压裂液注入可以通过流量模式和压力模式控制;③改进的声发射探头具有耐高油压性能,能够用于三轴室内。采用该装置进行了不同地应力、不同排量以及携砂条件下水力压裂试验,结果显示:地压力越大、排量越大红色砂岩起裂压力越大;携砂压裂后的压裂面离裸眼越远,支撑剂浓度越低且支撑剂并不是遍布所有压裂面;声发射累计计数在初期比较稳定,呈线性增加,在起裂前迅速增多。
    Abstract: In order to study the transport rules of propping agent in unconventional gas exploration, an apparatus of hydraulic sand fracturing is developed. It is mainly composed of rock triaxial testing machines, servo control system of hydraulic fracturing pump and acoustic emission text system. The advantages of the apparatus are illustrated as follows: (1) Hydraulic sand fracturing tests are able to be implemented under different formation stresses and pump rates. (2) Fracturing fluid injection is controlled by means of the pump rate or pump pressure. (3) AE sensor is improved for pressure-resistance, which can be used in triaxial cell. A series of hydraulic fracturing tests are performed under a combination of different formation stresses, different pump rates and fracturing fluid with sand conditions by this apparatus. The results show that the larger the formation pressure and the higher the pump rate, the larger the initiation pressure in red sandstone. The further distance the hydraulic sand fracturing surface off the open hole, the lower the concentrations of agent. But the local part has no propping agent. AE cumulative hits linearly relate with the time at the initial stage and increase rapidly while the sandstone approaches failure.
  • [1] 童晓光, 郭建宇, 王兆明. 非常规油气地质理论与技术进展[J]. 地学前缘, 2014, 21(1): 9-20. (TONG Xiao-guang, GUO Jian-yu, WANG Zhao-ming. The progress of geological theory and technology for unconventional oil and gas[J]. Earth Science Frontiers, 2014, 21(1): 9-20. (in Chinese))
    [2] SONG I, SUH M, WON K S, et al. A laboratory study of hydraulic fracturing breakdown pressure in tablerock sandstone[J]. Geosciences Journal, 2001, 5(3): 263-271.
    [3] ALSAYED M I. Utilising the Hoek triaxial cell for multiaxial testing of hollow rock cylinders[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(3): 355-366.
    [4] ISHIDA T. Acoustic emission monitoring of hydraulic fracturing in laboratory and field[J]. Construction and Building Materials, 2001, 15(5): 283-295.
    [5] ISHIDA T, AOYAGI K, NIWA T, et al. Acoustic emission monitoring of hydraulic fracturing laboratory experiment with supercritical and liquid CO2[J]. Geophysical Research Letters, 2012, 39(16).
    [6] CHITRALA Y, MORENO C, SONDERGELD C, et al. An experimental investigation into hydraulic fracture propagation under different applied stresses in tight sands using acoustic emissions[J]. Journal of Petroleum Science and Engineering, 2013, 108: 151-161.
    [7] 郭印同, 杨春和, 贾长贵, 等. 页岩水力压裂物理模拟与裂缝表征方法研究[J]. 岩石力学与工程学报, 2014, 33(1): 52-59. (GUO Yin-tong, YANG Chun-he, JIA Chang-gui, et al. Research on hydraulic fracturing physical simulation of shale and fracture characterization methods[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 52-59. (in Chinese))
    [8] 衡 帅, 杨春和, 曾义金, 等. 页岩水力压裂裂缝形态的试验研究[J]. 岩土工程学报, 2014, 36(7): 1243-1251. (HENG Shuai, YANG Chun-he, ZENG Yi-jin, et al. Experimental study on hydraulic fracture geometry of shale[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1243-1251. (in Chinese))
    [9] 陈 勉, 庞 飞, 金 衍. 大尺寸真三轴水力压裂模拟与分析[J]. 岩石力学与工程学报, 2000(增刊1): 868-872. (CHEN Mian, PANG Fei, JIN Yan. Simulation and analysis of real triaxial hydraulic fracturing[J]. Chinese Journal of Rock Mechanics and Engineering, 2000(S1): 868-872. (in Chinese))
    [10] 翟 成, 李贤忠, 李全贵. 煤层脉动水力压裂卸压增透技术研究与应用[J]. 煤炭学报, 2012, 36(12): 1996-2001. (ZHAI Cheng, LI Xiao-zhong, LI Quan-gui. Research and application of coal seam pulse hydraulic fracturing technology[J]. Journal of China Coal Society, 2012, 36(12): 1996-2001. (in Chinese))
    [11] 温庆志, 翟恒立, 罗明良, 等. 页岩气藏压裂支撑剂沉降及运移规律实验研究[J]. 油气地质与采收率, 2012, 19(6): 104-107. (WEN Qing-zhi, ZHAI Heng-li, LUO Ming-liang, et al. Study on proppant settlement and transport rule in shale gas fracturing[J]. Petroleum Geology and Recovery Efficiency, 2012, 19(6): 104-107. (in Chinese))
    [12] 郭建春, 曾凡辉, 余东合, 等. 压裂水平井支撑剂运移及产量研究[J]. 西南石油大学学报(自然科学版), 2009, 31(4): 79-82. (GUO Jian-chun, ZENG Fan-hui, YU Dong-he, et al. Study on fractured horizontal well proppant migration and the productivity[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2009, 31(4): 79-82. (in Chinese))
计量
  • 文章访问数:  389
  • HTML全文浏览量:  2
  • PDF下载量:  357
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-25
  • 发布日期:  2016-01-19

目录

    /

    返回文章
    返回