• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

土体稳定与承载特性的分析方法

黄茂松

黄茂松. 土体稳定与承载特性的分析方法[J]. 岩土工程学报, 2016, 38(1): 1-34. DOI: 10.11779/CJGE201601001
引用本文: 黄茂松. 土体稳定与承载特性的分析方法[J]. 岩土工程学报, 2016, 38(1): 1-34. DOI: 10.11779/CJGE201601001
HUANG Mao-song. Analysis methods for stability and bearing capacity of soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 1-34. DOI: 10.11779/CJGE201601001
Citation: HUANG Mao-song. Analysis methods for stability and bearing capacity of soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 1-34. DOI: 10.11779/CJGE201601001

土体稳定与承载特性的分析方法  English Version

基金项目: 国家杰出青年科学基金项目(50825803); 国家自然科学基金项目(11372228,51579177)
详细信息
    作者简介:

    黄茂松(1965- ),男,博士,教授,博士生导师,从事岩土工程方面的科研和教学工作。

Analysis methods for stability and bearing capacity of soils

  • 摘要: 结合研究团队多年的研究积累,分别从砂土与饱和软黏土两个方面阐述了在土体失稳与承载特性分析方法方面的理论研究成果。排水条件下密砂在到达峰值强度前可能会出现应变局部化失稳,而饱和松砂则可能出现分散性失稳;建立了基于三维非共轴塑性理论的变形分叉分析方法,分析了砂土平面应变试验和真三轴试验的应变局部化现象,进一步分析了各向异性砂土的强度特性和应变局部化现象,以及砂土的状态相关特性对应变局部化的影响;建立了基于状态相关本构模型的砂土应变局部化失稳弹塑性有限元分析方法,探讨了复合体理论和非局部塑性理论在消除有限元网格依赖性问题方面的可行性;建立了基于二阶功准则和状态相关本构模型的饱和砂土分散性失稳数值分析方法。提出了基于临界状态理论的饱和软黏土各向异性不排水强度理论公式,以及基于循环累积塑性应变的强度弱化公式,形成了适合低渗透性饱和软黏土的弹塑性静动力有限元分析方法;建立了非均质与各向异性软黏土地基稳定性问题的极限分析上限方法,进一步提出了不排水地基承载特性的虚拟加载上限分析方法,形成了分析地基承载特性循环弱化的弹塑性有限元法和虚拟加载上限法。所建立的分析方法将为砂土与饱和软黏土地基稳定性和承载特性的理论预测提供重要的技术手段。
    Abstract: By summarizing years of theoretical research achievements gained by the author and his research team members, the analysis methods to study the instability and behaviors capacity of soils were concluded from two aspects, sands and saturated soft clays, respectively. Under drained loading conditions, the deformation of dense sand may accompany with strain localization before reaching the plastic limit, but that of saturated loose sand may accompany with diffusive instability. The phenomenon of strain localization in plane strain tests and true triaxial tests of sands was studied by the bifurcation analysis based on the three-dimensional non-coaxial plasticity theory. Further, the strength properties and strain localization of anisotropic sands were analyzed, including the strain localization analysis using a state-dependent constitutive model for sands. In addition, the feasibility to overcome the mesh-size dependence problems with the homogenization procedure and the non-local regularization was explored in the finite element analysis. By using the state-dependent constitutive model, the elasto-plastic finite element procedure accounting for the strain localization of drained sands and diffusive instability of saturated sands was proposed. For the saturated soft clays, a simplified formula for calculating their anisotropic undrained shear strength was put forward based on the critical state theory, and the undrained shear strength degradation was also predicted according to the plastic strain accumulated during cyclic loading. Additionally, a rational static and dynamic finite element analysis method for analyzing the saturated soft clays with low permeability was proposed, which effectively solves the problem caused by the incompressible condition. The upper
  • [1] DUNCAN J M. State of the art: Limit equilibrium and finite-element analysis of slopes[J]. Journal of Geotechnical Engineering, 1996, 122(7): 557-596.
    [2] 陈祖煜, 弥宏亮, 汪小刚. 边坡稳定三维分析的极限平衡法[J]. 岩土工程学报, 2001, 23(5): 525-529. (CHEH Zu-yu, MI Hong-liang, WANG Xiao-gang. A three-dimensional limit equilibrium method for slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 525-529. (in Chinese))
    [3] ZHU D Y, LEE C F, JIANG H D. A numerical study of the bearing capacity factor N γ [J]. Canadian Geotechnical Journal, 2001, 38(5): 1090-1096.
    [4] ZHU D Y, LEE C F, JIANG H D. Generalised framework of limit equilibrium methods and numerical procedure for slope stability[J]. Géotechnique, 2003, 53(4): 377-395.
    [5] ZHENG H, THAM L G. Improved Bell’s method for the stability analysis of slopes[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(14): 1673-1689.
    [6] MARTIN C M. Exact bearing capacity calculations using the method of characteristics[C]// Proceeding of the 11th International Conference on Computer Methods and Advances in Geomechanics. Turin, 2005: 441-450.
    [7] POTTS D M. Numerical analysis: a virtual dream or practical reality?[J]. Géotechnique, 2003, 53(6): 535-573.
    [8] CHEN W F. Limit analysis and soil plasticity[M]. Elsevier: Amsterdam, 1975.
    [9] SLOAN S W. Geotechnical stability analysis[J]. Géotechnique, 2013, 63(7): 531-572.
    [10] MICHALOWSKI R L, SHI L. Bearing capacity of footings over two-layer foundation soils[J]. Journal of Geotechnical Engineering, 1995, 121(5): 421-428.
    [11] DONALD I, CHEN Z Y. Slope stability analysis by the upper bound approach: fundamentals and methods[J]. Canadian Geotechnical Journal, 1997, 34(6): 853-62.
    [12] 陈祖煜. 土力学经典问题的极限分析上、下限解[J]. 岩土工程学报, 2002, 24(1): 1-11. (CHEN Zu-yu. Limit analysis for the classic problems of soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 1-11. (in Chinese))
    [13] ZIENKIEWICZ O C, HUMPHESON C, LEWIS R W. Associated and non-associated viscoplasticity and plasticity in soil mechanics[J]. Géotechnique, 1975, 25(4): 671-689.
    [14] GRIFFITHS D V, LANE P A. Slope stability analysis by finite elements[J]. Géotechnique, 1999, 49(3): 387-403.
    [15] 郑颖人, 赵尚毅. 有限元强度折减法在土坡与岩坡中的应用[J]. 岩石力学与工程学报, 2004, 23(19): 3381-3388. (ZHENG Ying-ren, ZHAO Shang-yi. Application of strength reduction FEM in soil and rock slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(19): 3381-3388. (in Chinese))
    [16] HILL R. Acceleration waves in solids[J]. Journal of the Mechanics and Physics of Solids, 1962 , 10(1): 1-6.
    [17] RUDNICKI J W, RICE J R. Conditions for the localization of the deformation in pressure sensitive dilatant materials[J]. Journal of the Mechanics and Physics of Solids, 1975, 23(6): 371-394.
    [18] VARDOULAKIS I. Shear band inclination and shear modulus of sand in biaxial tests[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1980, 4(2): 103-119.
    [19] VARDOULAKIS I, GRAF B. Calibration of constitutive models for granular materials using data from biaxial experiments[J]. Géotechnique, 1985, 35(3): 299-317.
    [20] HAN C, DRESCHER A. Shear bands in biaxial tests on dry coarse sand[J]. Soils and Foundations, 1993, 33(1):118-132.
    [21] PAPAMICHOS E, VARDOULAKIS I. Shear band formation in sand according to non-coaxial plasticity model[J]. Géotechnique, 1995, 45(4): 649-661.
    [22] 钱建固, 黄茂松. 土体变形分叉的非共轴理论[J]. 岩土工程学报, 2004, 26(6): 777-781. (QIAN Jian-gu, HUANG Mao-song. Non-coaxiality for deformation bifurcation in soils[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(6): 777-781. (in Chinese))
    [23] 钱建固, 黄茂松, 杨 峻. 真三维应力状态下土体应变局部化的非共轴理论[J]. 岩土工程学报, 2006, 28(4): 510-515. (QIAN Jian-gu, HUANG Mao-song, YANG Jun. Non-coaxiality for deformation bifurcation in soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(4): 510-515. (in Chinese))
    [24] QIAN J G, YANG J, HUANG M S. Three-dimensional noncoaxial plasticity modeling of shear band formation in geomaterials[J]. Journal of Engineering Mechanics, 2008, 134(4): 322-329.
    [25] QIAN J G, YOU Z P, HUANG M S, et al. A micromechanics-based model for estimating localized failure with effects of fabric anisotropy[J]. Computers and Geotechnics, 2013, 50:90-100.
    [26] CHU J, LO S C R, LEE I K. Strain softening and shear band formation of sand in multi-axial testing[J]. Géotechnique, 1996, 46(1): 63-82.
    [27] LADE P V, WANG Q. Analysis of shear banding in true triaxial tests on sand[J]. Journal of Engineering Mechanics, 2001, 127(8): 762-768.
    [28] WANG Q, LADE P V, Shear banding in true triaxial tests and its effect on failure in sand[J]. Journal of Engineering Mechanics, 2001, 127(8): 754-761.
    [29] HUANG M S, LU X L, QIAN J G. Non-coaxial elasto-plasticity model and bifurcation prediction of shear banding in sands[J]. International Journal of Numerical and Analytical Methods in Geomechanics, 2010, 34(9): 906-919.
    [30] OCHIAI H, LADE P V. Three-dimensional behavior of sand with anisotropic fabric[J]. Journal of Geotechnical Engineering, 1983, 109(10): 1313-1328.
    [31] LADE P V, NAM J, HONG W P. Shear banding and cross-anisotropic behaviour observed in laboratory sand tests with stress rotation[J]. Canadian Geotechnical Journal, 2008, 45: 74-84.
    [32] MORTARA G. A hierarchical single yield surface for frictional materials[J]. Computers and Geotechnics, 2009, 36(6): 960-967.
    [33] 吕玺琳, 黄茂松, 钱建固. 层状各向异性无黏性土三维强度准则[J]. 岩土工程学报, 2011, 33(6): 945-949. (LU Xi-lin, HUANG Mao-song, QIAN Jian-gu. Three- dimensional strength criterion for layered-anisotropic cohesionless soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 945-949. (in Chinese))
    [34] PIETRUSZCZAK S, MROZ Z. Formulation of anisotropic failure criteria incorporating a microstructure tensor [J]. Computers and Geotechnics, 2000, 26(2): 105-112.
    [35] RODRIGUEZ N M, LADE P V. Effects of principal stress directions and mean normal stress on failure criterion for cross-anisotropic sand[J]. Journal of Engineering Mechanics, 2013, 139(11): 1592-1601.
    [36] 吕玺琳, 钱建固, 黄茂松. 考虑主应力方向影响的正交各向异性土体强度[J]. 同济大学学报, 2015, 43(5): 657-661. (LU Xi-lin, QIAN Jian-gu, HUANG Mao-song. Strength of Cross-anisotropic soils considering influence of principal stress direction[J]. Journal of Tongji University (Natural Science), 2015, 43(5): 657-661. (in Chinese))
    [37] LADE P V, RODRIGUEZ N M, DYCK E J V. Effects of principal stress directions on 3D failure conditions in cross-anisotropic sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140: 04013001.
    [38] ODA M, KOISHIKAWA I, HIGUCHI T. Experimental study of anisotropic shear strength of sand by plane strain test[J]. Soils and Foundations, 1978, 18(1): 25-38.
    [39] ABELEV A V, LADE P V. Effects of cross anisotropy on three-dimensional behavior of sand: I Stress-strain behavior and shear banding[J]. Journal of Engineering Mechanics, 2003, 129(2): 160-166.
    [40] LU X L, HUANG M S, QIAN J G. The onset of strain localization in cross-anisotropic soils under true triaxial condition[J]. Soils and Foundations, 2011, 51(4): 693-700.
    [41] LI X S, DAFALIAS Y F, WANG Z L. State-dependent dilatancy in critical-state constitutive modeling of sand[J]. Canadian Geotechnical Journal, 1999, 36: 599-611.
    [42] GAJO A, WOOD M. Severn-trent sand: a kinematic-hardening constitutive model: the q - p formulation[J]. Géotechnique, 1999, 49(5): 595-614.
    [43] 黄茂松, 扈 萍, 钱建固. 基于材料状态相关砂土临界状态理论的应变局部化分析[J]. 岩土工程学报, 2008, 30(8): 1133-1139. (HUANG Mao-song, HU Ping, QIAN Jian-gu. Strain localization of sand based on a state-dependent critical state model[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1133-1139. (in Chinese))
    [44] 黄茂松, 李学丰, 贾苍琴. 基于材料状态相关理论的砂土双屈服面模型[J].岩土工程学报, 2010, 31(11): 1764-1771. (HUANG Mao-song, LI Xue-feng, JIA Cang-qin. A double yield surface constitutive model for sand based on state-dependent critical state theory[J]. Chinese Journal of Geotechnical Engineering, 2010, 31(11): 1764-1771 (in Chinese))
    [45] BOLTON M D. The strength and dilatancy of sands[J]. Géotechnique, 1986, 36(1): 65-78.
    [46] YANG J, LI X S. State-dependent strength of sands from the perspective of unified modeling[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(2): 186-198.
    [47] LI X S, DAFALIAS Y F. Constitutive modeling of inherently anisotropic sand behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(10): 868-880.
    [48] YANG Z X, LI X S, YANG J. Quantifying and modelling fabric anisotropy of granular soils[J]. Géotechnique, 2008, 58(4): 237-248.
    [49] 黄茂松, 李学丰, 钱建固. 各向异性砂土的应变局部化分析[J].岩土工程学报, 2012, 34(10): 1885-1892. (HUANG Mao-song, LI Xue-feng, QIAN Jian-gu. On Strain localization of anisotropic sands[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1885-1892 (in Chinese))
    [50] 李学丰, 黄茂松, 钱建固. 基于非共轴理论的各向异性砂土应变局部化分析[J]. 工程力学, 2014, 31(3): 205-211, 246. (LI Xue-feng, HUANG Mao-song, QIAN Jian-gu. Strain localization analysis of anisotropic sands based on non-coaxial theory[J]. Engineering Mechanics, 2014, 31(3): 205-211, 246. (in Chinese))
    [51] DRESCHER A, DETOURNAY E. Limit load in translational failure mechanisms for associative and non-associative materials[J]. Géotechnique, 1993, 43(3): 443-456.
    [52] YIN J H, WANG Y J, SELVADURAI A P S. Influence of nonassociativity on the bearing capacity of a strip footing[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(11): 985-989.
    [53] HUANG M S, JIA C Q. Strength reduction FEM in stability analysis of soil slopes subjected to transient unsaturated seepage[J]. Computers and Geotechnics, 2009, 36(1): 93-101.
    [54] HUANG M S, WANG H R, SHENG D C, et al. Rotational-translational mechanism for the upper bound stability analysis of slopes with weak interlayer[J]. Computers and Geotechnics, 2013, 53: 133-141.
    [55] AZAMI A, PIETRUSZCZAK S, GUO P. Bearing capacity of shallow foundations in transversely isotropic granular media[J]. International Journal for Numerical and Analytical Aethods in Geomechanics, 2010, 34(8): 771-880.
    [56] KOUTSABELOULIS N C, GRIFFITHS D V. Numerical modeling of the trap door problem [J]. Géotechnique, 1989, 39(1): 77-89.
    [57] PIETRUSZCZAK S, NIU X. On the description of localized deformation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1993, 17(11): 791-805.
    [58] HUANG M S, PIETRUSZCZAK S. Numerical modelling of localized deformation in saturated soils[C]// Proceeding of the 9th International Conference on Computer Methods and Advances in Geomechanics. Rotterdam: Balkema, 1997: 427-432.
    [59] 黄茂松, 钱建固, 吴世明. 饱和土体应变局部化的复合体理论[J]. 岩土工程学报, 2002, 24(1): 21-25. (HUANG Mao-song, QIAN Jian-gu, WU Shi-ming. A homogenisation approach to localized deformation in saturated soils[J]. Chinese Joumal of Geotechnical Engineering, 2002, 24(1): 21-25. (in Chinese))
    [60] 黄茂松, 钱建固. 平面应变条件下饱和土体分叉后的力学性状[J]. 工程力学, 2005, 22(1): 48-53. (HUANG Mao-song, QIAN Jian-gu. Post-bifurcation response of saturated soils under plane strain conditions[J]. Engineering Mechanics, 2005, 22(1): 48-53. (in Chinese) )
    [61] SAKAI T, TANAKA T. Scale effect of a shallow circular anchor in dense sand[J]. Soils and foundations, 1998, 38(2): 93-99.
    [62] BAŽANT Z P. Instability, ductility, and size effect in strain softening concrete[J]. Journal of Engineering Mechanics, 1976, 102(2): 331-344.
    [63] VERMEER P A, BRINKGREVE R B J. A new effective non-local strain measure for softening plasticity[C]. Localization and Bifurcation Theory for Soil and Rocks. Rotterdam: Balkema, 1994: 89-100.
    [64] STRÖMBERG L, RISTINMAA M. FE-formulation of a nonlocal plasticity theory[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 136(1): 127-144.
    [65] LU X L, BARDET J P, HUANG M S. Numerical solutions of strain localization with nonlocal softening plasticity[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198: 3702-3711.
    [66] LU X L, BARDET J P, HUANG M S. Length scales interaction in nonlocal plastic strain localization of bars of varying section[J]. Journal of Engineering Mechanics, 2010, 136(8): 1036-1042.
    [67] LU X L, BARDET J P, HUANG M S. Spectral analysis of nonlocal regularization in two-dimensional finite element models[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36(2): 219-235.
    [68] 曲 勰, 黄茂松, 吕玺琳. 基于非局部Mohr-Coulomb模型的土体渐进破坏分析[J]. 岩土工程学报, 2013, 35(3): 523-530. (QU Xie, HUANG Mao-song, LÜ Xi-lin. Progressive failure of soils based on non-local Mohr-Coulomb models[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 523-530. (in Chinese))
    [69] ZIENKIEWICZ O C, HUANG M S, PASTOR M. Localization problems in plasticity using finite elements with adaptive remeshing[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1995, 19(2): 127-148.
    [70] ZIENKIEWICZ O C, PASTOR M, HUANG M S. Softening, localisation and adaptive remeshing-Capture of discontinuous solution[J]. Computational Mechanics, 1995, 17(1-2): 98-106.
    [71] 黄茂松, 钱建固, 吴世明. 土坝动力应变局部化与渐进破坏的自适应有限元分析[J]. 岩土工程学报, 2001, 23(3): 306-310. (HUANG Mao-song, QIAN Jian-gu, WU Shi-ming. An adaptive finite element method for strain localization and progressive failure of earth dam under earthquake[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(3): 306-310. (in Chinese))
    [72] 黄茂松, 贾苍琴, 钱建固. 岩土材料应变局部化的有限元分析方法[J]. 计算力学学报, 2007, 24(4): 465-471. (HUANG Mao-song, JIA Cang-qin, QIAN Jian-gu. Strain localization problems in geomaterials using finite elements[J]. Chinese Journal of Computational Mechanics, 2007, 24(4): 465-471. (in Chinese))
    [73] LU X L, HUANG M S, QIAN J G. Prediction of plane strain undrained diffuse and localized instability with non-coaxial plasticity[J]. Soils and Foundations, 2014, 54(12): 1070-1080.
    [74] LU X L, HUANG M S. Static liquefaction of sands under isotropically and K 0 -consolidated undrained triaxl conditions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(1): 04014087.
    [75] 吕玺琳, 钱建固, 黄茂松. 不排水加载条件下 K 0 固结饱和砂土失稳预测[J]. 岩土工程学报, 2015, 37(6): 1010-1015. (LU Xi-lin, QIAN Jian-gu, HUANG Mao-song. Prediction of instability of K 0 -consolidated saturated sands under undrained loading conditions[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1010-1015. (in Chinese))
    [76] CHU J, WANATOWSKI D. Instability conditions of loose sand in plane strain[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(1): 136-142.
    [77] 黄茂松, 曲 勰, 吕玺琳. 基于状态相关本构模型的松砂静态液化失稳数值分析[J]. 岩石力学与工程学报, 2014, 33(7): 1479-1487. (HUANG Mao-song, QU Xie, LU Xin-lin. Instability and static liquefaction analysis of loose sands with a state-dependent constitutive model[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(7): 1479-1487. (in Chinese))
    [78] 沈珠江. 软土工程特性和软土地基设计[J]. 岩土工程学报, 1998, 20(1): 108-110. (SHEN Zhu-jiang. Engineering properties of soft soils and design of soft ground[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(1): 108-110. (in Chinese))
    [79] 陈祖煜. 深基坑稳定分析中几个问题的讨论[J]. 岩土工程学报, 2010, 32(增刊1): 1-8. (CHEN Zu-yu. Discussion on several problems in deep foundation pit engineering[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S1): 1-8. (in Chinese))
    [80] WROTH C P. The interpretation of in situ soil tests[J]. Géotechnique, 1984, 34(4): 449-489.
    [81] 魏 星, 黄茂松. 天然结构性黏土的各向异性边界面模型[J]. 岩土工程学报, 2007, 29(8): 1225-1229. (WEI Xing, HUANG Mao-song. Anisotropic bounding surface model for natural structured clays[J]. Chinese Journal of Geotechnical of Engineering, 2007, 29(8): 1224-1229. (in Chinese))
    [82] HUANG M S, LIU Y H, SHENG D C. Simulation of yielding and stress-stain behavior of Shanghai soft clay[J]. Computers and Geotechnics, 2011, 38(3): 341-353.
    [83] 黄茂松, 宋晓宇, 秦会来. K 0 固结黏土基坑抗隆起稳定性上限分析[J]. 岩土工程学报, 2008,30(2): 250-255. (HUANG Mao-song, SONG Xiao-yu, QIN Hui-lai. Basal stability of braced excavations in K 0 -consolidated soft clay by upper bound method[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 250-255. (in Chinese))
    [84] 纠永志. 开挖条件下软黏土地基桩筏基础非线性分析[D]. 上海: 同济大学, 2014. (JIU Yong-zhi. Nonlinear analysis of pile-raft foundations during excavation in soft clay[D]. Shanghai: Tongji University, 2014. (in Chinese))
    [85] 柳艳华. 天然软黏土屈服特性及主应力轴旋转效应研究[D]. 上海: 同济大学, 2010. (LIU Yan-hua. On yielding characteristics and principal stress rotation in natural soft clay[D]. Shanghai: Tongji University, 2010. (in Chinese))
    [86] 黄茂松, 余生兵, 秦会来. 基于上限法的 K 0 固结黏土基坑抗隆起稳定分析[J]. 土木工程学报, 2011, 44(3): 101-108. (HUANG Mao-song, YU Sheng-bing, QIN Hui-lai. Upper bound method for basal stability analysis of braced excavations in K 0 -consolidated clays[J]. China Civil Engineering Journal, 2011, 44(3): 101-108. (in Chinese))
    [87] CASAGRANDE A, CARRILLO N. Shear failure of anisotropic materials[J]. Journal of Boston Society of Civil Engineers, 1944, 31(4): 74-87.
    [88] LADD C C. Strength parameters and stress-strain behavior of saturated clays[R]. Cambridge: Massachusetts Institute of Technology, 1971.
    [89] 柳艳华, 黄茂松, 李 帅. 循环荷载下结构性软黏土的各向异性边界面模型[J]. 岩土工程学报, 2010, 32(7): 1066-1071. (LIU Yan-hua, HUANG Mao-song, LI Shuai. An anisotropic bounding surface model for structured soft clay under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7): 1066-1071. (in Chinese))
    [90] HONG W P, LADE P V. Elasto-plastic behavior of K 0 -consolidated clay in torsion shear tests[J]. Soils and Foundations, 1989, 29(2): 127-140.
    [91] 黄茂松, 刘 明, 柳艳华. 循环荷载下软黏土的各向异性边界面模型[J]. 水利学报, 2009, 40(2): 188-193. (HUANG Mao-song, LIU Ming, LIU Yan-hua. Anisotropic bounding surface model for saturated soft clay under cyclic loading[J]. Journal of Hydraulic Engineering, 2009, 40(2): 188-193. (in Chinese))
    [92] 黄茂松, 李 帅. 长期往复荷载作用下近海饱和软黏土强度和刚度的弱化特性[J]. 岩土工程学报, 2010, 32(10): 1491-1498. (HUANG Mao-song, LI Shuai. Degradation of stiffness and strength of offshore saturated soft clay under long-term cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10): 1491-1498. (in Chinese))
    [93] 黄茂松, 李进军, 李兴照. 饱和软黏土的不排水循环累积变形特性[J]. 岩土工程学报, 2006, 28(7): 891-895. (HUANG Mao-song, LI Jin-jun, LI Xing-zhao. Cumulative deformation behaviour of soft clay in cyclic undrained tests[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 891-895. (in Chinese))
    [94] 黄茂松, 姚兆明. 循环荷载下饱和软黏土的累积变形显式模型[J]. 岩土工程学报, 2011, 33(3): 325-331. (HUANG Mao-song, YAO Zhao-ming. Explicit model for cumulative strain of saturated clay subjected to cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 325-331. (in Chinese))
    [95] 姚兆明, 黄茂松, 曹 杰. 主应力轴循环旋转下饱和软黏土的累积变形[J]. 岩土工程学报, 2012, 34(6): 1005-1012. (YAO Zhao-ming, HUANG Mao-song, CAO Jie. Cumulative deformation of saturated soft clay subjected to cyclic rotation of principal stress axis[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1005-1012. (in Chinese))
    [96] PREVOST J H. Mathematical modeling of monotonic and cyclic undrained clay behavior[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1977, 1(2): 195-216.
    [97] 王建华, 要明伦. 软黏土不排水循环特性的弹塑性模拟[J]. 岩土工程学报, 1996, 18(3): 11-18. (WANG Jian-Hua, YAO Ming-Lun. Elastoplastic simulation of the cyclic undrained behavior of soft clays[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(3): 11-18. (in Chinese))
    [98] ZIENKIEWICZ O C, CHANG C T, HINTON E. Nonlinear seismic response and liquefaction[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1978, 2(4): 381-404.
    [99] ZIENKIEWICZ O C, HUANG M S, WU J, et al. A new algorithm for the coupled soil - pore fluid problem[J]. Shock and Vibration, 1993, 1(1): 3-13.
    [100] HUANG M S, WU S M, ZIENKIEWICZ O C. Incompressible or nearly incompressible soil dynamic behavior-a new staggered algorithm to circumvent restrictions of mixed formulation[J]. Soil Dynamics and Earthquake Engineering, 2001, 21(2): 169-179.
    [101] HUANG M S, ZIENKIEWICZ O C. New unconditionally stable staggered solution procedures for coupled soil-pore fluid dynamic problems[J]. International Journal for Numerical Methods in Engineering, 1998, 43(6): 1029-1052.
    [102] ZIENKIEWICZ O C, HUANG M S, PASTOR M. Computational soil dynamics - A new algorithm for drained and undrained conditions[C]// Proceeding of the 8th International Conference on Computer Methods and Advances in Geomechanics. Rotterdam: Balkema, 1994: 47-59.
    [103] HUANG M S, YUE Z Q, THAM L G, et al. On the stable finite element procedures for dynamic problems of saturated porous media[J]. International Journal for Numerical Methods in Engineering, 2004, 61(9): 1421-1450.
    [104] 黄茂松, 魏 星. 循环荷载饱和土动力学问题稳定有限元解[J].岩土工程学报,2005,27(2): 173-177. (HUANG Mao-song, WEI Xing. Stabilized finite elements for dynamic problems of saturated soil subjected to cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2005,27(2): 173-177. (in Chinese))
    [105] 刘 莹, 黄茂松, 李 帅. 海上风电桩基础竖向承载力循环弱化简化分析[J]. 岩土力学, 2013, 34(9): 2655-2660. (LIU Ying, HUANG Mao-song, LI Shuai. Simplified analysis of cyclic degradation of axial bearing capacity for offshore wind turbine pile foundations[J]. Rock and Soil Mechanics, 2013, 34(9): 2655-2660. (in Chinese))
    [106] 俞 剑. 饱和黏土中大直径单桩水平循环加载特性[D]. 上海: 同济大学, 2015. (YU Jian. Behavior of monopiles in saturated clay subjected to cyclic lateral load[D]. Shanghai: Tongji University, 2015. (in Chinese))
    [107] 黄茂松, 刘 莹. 基于非线性运动硬化模型的饱和黏土桩基础竖向循环弱化数值分析[J]. 岩土工程学报, 2014, 36(12): 2170-2178. (HUANG Mao-song, LIU Ying. Numerical analysis of axial cyclic degradation of a single pile in saturated soft soil based on nonlinear kinematic hardening constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2170-2178. (in Chinese))
    [108] HUANG M S, LIU Y. Axial capacity degradation of single piles in soft clay under cyclic loading[J]. Soils and Foundations, 2015, 55(2): 315-328.
    [109] POULOS H G. Development of an analysis for cyclic axial loading of piles[C]// Proceeding of the 3rd International Conference on Computer Methods and Advances in Geomechanics. Rotterdam: Balkema, 1979: 1513-1530.
    [110] ZHANG C R, WHITE D, RANDOLPH M F. Centrifuge modeling of the cyclic lateral response of a rigid pile in soft clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 137(7): 717-729.
    [111] 黄茂松, 秦会来, 郭院成.非均质和各向异性黏土地基承载力的上限解[J]. 岩石力学与工程学报, 2008, 27(3): 511-518. (HUANG Mao-song, QIN Hui-lai, GUO Yuan-cheng. Upper bound method for bearing capacity calculation of anisotropic and nonhomogeneous clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(3): 511-518. (in Chinese))
    [112] HUANG M S, QIN H L. Upper-bound multi-rigid-block solutions for bearing capacity of two-layered soils[J]. Computers and Geotechnics, 2009, 36(3): 525-529.
    [113] KUSAKABE O, SUZUKI H, NAKASE A. An upper bound calculation on bearing capacity of a circular footing on a non-homogeneous clay[J]. Soils and Foundations, 1986, 26(3): 143-148.
    [114] 杜佐龙. 非均质与各向异性黏土地基稳定性分析[D]. 上海: 同济大学, 2010. (DU Zuo-long. Stability analysis of non-homogeneous and anisotropic clay foundations[D]. Shanghai: Tongji University, 2010. (in Chinese))
    [115] 秦会来, 黄茂松, 马少坤. 黏土基坑抗隆起稳定分析的多块体上限解[J]. 岩石力学与工程学报, 2010, 29(1): 73-81. (QIN Hui-lai, HUANG Mao-song, MA Shao-kun. Multi-block upper bound method for basal heave stability analysis of braced excavations in clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(1): 73-81. (in Chinese))
    [116] 黄茂松, 余生兵. 基坑抗隆起稳定的块体集上限分析[J]. 岩土工程学报, 2012, 34(8): 1440-1447. (HUANG Mao-song, YU Sheng-bing. Upper bound analysis of basal stability in undrained clay based on block set mechanism[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1440-1447. (in Chinese))
    [117] 黄茂松, 杜佐龙, 宋春霞. 支护结构入土深度对黏土基坑抗隆起稳定的影响分析[J]. 岩土工程学报, 2011, 33(7): 1097-1103. (HUANG Mao-song, DU Zuo-long, SONG Chun-xia. Effects of inserted depth of wall penetration on basal stability of foundation pits in clay[J]. Chinese Journal of Geotechnical Engineering 2011, 33(7): 1097-1103. (in Chinese))
    [118] 黄茂松, 宋春霞, 吕玺琳. 非均质黏土地基隧道环向开挖面稳定上限分析[J]. 岩土工程学报, 2013, 35(8): 1504-1512. (HUANG Mao-song, SONG Chun-xia, LÜ Xi-lin. Upper bound analysis for stability of a circular tunnel in heterogeneous clay[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1504-1512. (in Chinese))
    [119] HUANG M S, SONG C X. Upper-bound stability analysis of a plane strain heading in non-homogeneous clay[J]. Tunnelling and Underground Space Technology, 2013, 38: 213-223.
    [120] DAVIS E H, GUNN M J, MAIR R J, et al. The stability of shallow tunnels and underground openings in cohesive material[J]. Géotechnique, 1980, 30(4): 397-416.
    [121] 周维祥. 非均质黏土地基隧道开挖面稳定性分析[D]. 上海: 同济大学, 2011. (ZHOU Wei-xiang. Stability of shield tunnel excavation in undrained condition[D]. Shanghai: Tongji University, 2011. (in Chinese))
    [122] AUGARDE C E, LYAMIN A V, SLOAN S W. Stability of an undrained plane strain heading revisited[J]. Computers and Geotechnics, 2003, 30(5): 419-430.
    [123] 宋春霞, 黄茂松, 周维祥. 黏土地层隧道开挖面三维稳定性上限分析[J]. 岩土工程学报, 2015, 37(4): 650-658. (SONG Chun-xia, HUANG Mao-song, ZHOU Wei-xiang. Three-dimensional face stability analysis of tunnels in cohesive soils by upper bound limit method[J]. Chinese Journal of Geotechnical Engineering,, 2015, 37(4): 650-658. (in Chinese))
    [124] KIMURA T, MAIR R J. Centrifugal testing of model tunnels in soft clay[C]//Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering. Stockholm, 1981: 319-322.
    [125] MURFF J D, HAMILTON J M. P-ultimate for undrained analysis of laterally loaded piles[J]. Journal of Geotechnical Engineering, 1993, 119(1): 91-107.
    [126] YU J, HUANG M S, ZHANG C R. Three-dimensional upper bound analysis for ultimate bearing capacity of a laterally loaded pile in undrained clay[J]. Canadian Geotechnical Journal, 2015, 52(11): 1775-1790.
    [127] BOLTON M D, POWIRIE W. Behaviour of diaphragm walls in clay prior to collapse[J]. Géotechnique, 1988, 38(2): 167-189.
    [128] KLAR A, OSMAN A S. Load-displacement solutions for piles and shallow foundations based on deformation fields and energy conservation[J]. Géotechnique, 2008, 58(7): 581-589.
    [129] 黄茂松, 俞 剑, 张陈蓉. 基于应变路径法的黏土中水平受荷桩 p - y 曲线[J]. 岩土工程学报, 2015, 37(3): 400-409. (HUANG Mao-song, YU Jian, ZHANG Chen-rong. p - y curves of laterally loaded piles in clay based on strain path approach[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 400-409. (in Chinese))
    [130] KLAR A. Upper bound for cylinder movement using “elastic” fields and its possible application to pile deformation analysis[J]. International Journal of Geomechanics, 2008, 8(2): 162-167.
    [131] EINAV I, RANDOLPH M F. Combining upper bound and strain path methods for evaluating penetration resistance[J]. International Journal for Numerical Methods in Engineering, 2005, 63(14): 1991-2016.
    [132] OSMAN A S, BOLTON M D, MAIR R J. Predicting 2D ground movements around tunnels in undrained clay[J]. Géotechnique, 2006, 56(9): 597-604.
    [133] KLAR A, KLEIN B. Energy-based volume loss prediction for tunnel face advancement in clays[J]. Géotechnique, 2014, 64(10): 776-786.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-09
  • 发布日期:  2016-01-19

目录

    /

    返回文章
    返回