• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

冻结砂土三轴试验中颗粒破碎研究

马玲, 齐吉琳, 余帆, 尹振宇

马玲, 齐吉琳, 余帆, 尹振宇. 冻结砂土三轴试验中颗粒破碎研究[J]. 岩土工程学报, 2015, 37(3): 544-550. DOI: 10.11779/CJGE201503020
引用本文: 马玲, 齐吉琳, 余帆, 尹振宇. 冻结砂土三轴试验中颗粒破碎研究[J]. 岩土工程学报, 2015, 37(3): 544-550. DOI: 10.11779/CJGE201503020
MA Ling, QI Ji-lin, YU Fan, YIN Zhen-yu. Particle crushing of frozen sand under triaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 544-550. DOI: 10.11779/CJGE201503020
Citation: MA Ling, QI Ji-lin, YU Fan, YIN Zhen-yu. Particle crushing of frozen sand under triaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 544-550. DOI: 10.11779/CJGE201503020

冻结砂土三轴试验中颗粒破碎研究  English Version

基金项目: 国家自然科学基金项目(41172253); 北京市属高等学校高层次人才引进与培养计划项目(CIT&TCD20150101); 冻土工程国家重点实验室开放基金项目(SKLFSE201210)
详细信息
    作者简介:

    马 玲(1987- ),女,宁夏西吉人,博士研究生,主要从事冻土力学与寒区工程等方面的研究。E-mail: maling0962@mails.jlu.edu.cn。

    通讯作者:

    齐吉琳

  • 中图分类号: TU41

Particle crushing of frozen sand under triaxial compression

  • 摘要: 压力作用下颗粒发生破碎是引起砂土力学特性变化的重要因素之一,冻结砂土也是如此。对冻结砂土进行了不同温度和围压下的三轴剪切试验,并筛分得到三轴试验前后的颗粒大小分布曲线。通过引入Hardin定义的颗粒破碎率Br,分析了围压与颗粒破碎的关系及颗粒破碎对冻土抗剪强度的影响。结果表明:在温度为-0.5℃,-1℃,-2℃,-5℃和围压为0.5,2,5,10 MPa的条件下,三轴剪切过程中会产生较为可观的颗粒破碎;颗粒破碎率Br随围压增大,到达一定围压后Br不再随着围压的增大发生明显变化,即存在一个颗粒不再发生明显破碎的临界围压σr。结合前人研究发现,-5℃下一般工程关心的围压范围内压融对冻土力学特性没有显著影响,而颗粒破碎起控制性作用。分析表明:-5℃条件下在不同的围压范围颗粒破碎对抗剪强度具有不同的影响。试验所采用的围压范围内,随着围压的增大,颗粒破碎率增大使得冻土的抗剪强度降低;破碎率达到极限以后,由于破碎的颗粒重排列又导致抗剪强度有所提高。
    Abstract: Particle crushing is one of the important factors to change mechanical properties of frozen sand, which is hardly studied quantitatively so far. Triaxial compression tests are carried out on a saturated frozen sand at -0.5℃, -1℃, -2℃ and -5℃ under the confining pressure of 0.5, 2, 5 and 10 MPa, respectively. The particle crushing ratio, Br, defined by Hardin is obtained through the particle-size distribution curves for samples before and after triaxial tests. It aims to analyze the relationship between confining pressure and particle crushing as well as the influence of the particle crushing on strength. The testing program presents a considerable particle crushing in triaxial compression of the frozen sand. There is a critical confining pressure σr. When σ3r, the particle crushing ratio, Br, increases with the increase in confining pressure; otherwise, Br does not increase obviously with the increase in confining pressure. Previous studies as well as the test results from this work show that under -5℃, pressure melting does not play important roles in mechanical properties of frozen soils. Therefore the test results under this temperature are taken for analysis without considering pressure melting. It is found that particle crushing has a dual influence on the strength of frozen sand. Under low pressure levels, particle crushing leads to weakening and strength decreases; with the increase in pressure, particle crushing reaches the maximum and particle rearrangement tends to improve the strength.
  • [1] TERZAGHI K, PECK R B. Siol mechanics in engineering practice[M]. New York: Wiley, 1948.
    [2] DE BEER E E. The scale effect in the transposition of the results of deep sounding tests on the ultimate bearing capacity of piles and caisson foundations[J]. Géotechnique, 1963, 13(1): 1-18.
    [3] KJAERNSLI B, SANDE A. Compressibility of some coarse grained materials[C]// Proc European Conf. Soil Mech and Found Engrg. Weisbaden, 1963: 245-251.
    [4] HALL E B, GORDON B B. Triaxial testing with large-scale high pressure equipment[J]. Laboratory Shear Testing of Soils Spechial Tech Pubication, 1963, 361: 315-328.
    [5] 张季如, 祝 杰, 黄文竞, 等. 侧限压缩下石英砂砾的颗破碎特性及其分形描述[J]. 岩土工程学报, 2008, 30(6): 783-789. (ZHANG Ji-ru, ZHU Jie, HUANG Wen-jing, et al.Crushing and fractal behaviors of quartz sand-gravel particles under confined compression[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 783-789. (in Chinese))
    [6] MARSAL R J. Large-scale testing of rockfill materials[J]. Journal of the Soil Mechanics and Foundations Division, 1967, 93(2): 27-43.
    [7] LADE P V, YAMAMURO J A, BOPP P A. Significance of particle crushing in granular materials[J]. Journal of Geotechnical Engineering, ASCE, 1996, 122(4): 309-316.
    [8] LEE K L, FARHOOMAND I. Compressibility and crushing of granular soil in anisotropic triaxial compression[J]. Canadian Geotechnical Journal, 1967, 4(1): 68-86.
    [9] HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, ASCE, 1985, 111(10): 1177-1192.
    [10] 尹振宇, 许 强, 胡 伟. 考虑颗粒破碎效应的粒状材料本构研究: 进展及发展[J]. 岩土工程学报, 2012, 34(12): 2170-2180. (YIN Zhen-yu, XU Qiang, HU Wei. Constitutive relations for granular materials considering particle crushing: review and development[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2170-2180. (in Chinese))
    [11] 杨 光, 张丙印, 于玉贞, 等. 不同应力路径下粗粒料的颗粒破碎试验研究[J]. 水利学报, 2010, 41(3): 338-342. (YANG Guang, ZHANG Bing-yin, YU Yu-zhen, et al. An experimental study on particle breakage of coarse-grained materials under various stress paths[J]. Journal of Hydraulic Engineering, 2010, 41(3): 338-342. (in Chinese))
    [12] 郭熙灵, 胡 辉, 包承纲. 堆石料颗粒破碎对剪胀性及抗剪强度的影响[J].岩土工程学报, 1997, 19(3): 83-88. (GUO Xi-ling, HU Hui, BAO Cheng-gang. Experimental studies of the effects of grain breakage on the dilatancy and shear strength of rock fill[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 83-88. (in Chinese))
    [13] 汪 稔, 孙吉主. 钙质砂不排水性状的损伤-滑移耦合作用分析[J]. 水利学报, 2002(7): 75-78. (WANG Ren, SUN Ji-zhu. Damage-slide coupled interaction behavior of undrained calcareous sand[J]. Journal of Hydraulic Engineering, 2002(7): 75-78. (in Chinese))
    [14] 米占宽, 李国英, 陈铁林. 考虑颗粒破碎的堆石体本构模型[J]. 岩土工程学报, 2007, 29(12): 1865-1869. (MI Zhan-kuan, LI Guo-ying, CHEN Tie-lin. Constitutive model for rockfill material considering grain crushing[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(12): 1865-1869. (in Chinese))
    [15] 孙海忠, 黄茂松. 考虑颗粒破碎的粗粒土临界状态弹塑性本构模型[J]. 岩土工程学报, 2010, 32(8): 1284-1290. (SUN Hai-zhong, HUANG Mao-song. Critical state elasto-plastic model for coarse granular aggregates incorporating particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8): 1284-1290. (in Chinese))
    [16] 张家铭, 汪 稔, 张阳明, 等. 土体颗粒破碎研究进展[J]. 岩土力学, 2004, 24(增刊): 661-665. (ZHANG Jia-ming, WANG Ren, ZHANG Yang-ming, et al. Advance in studies of soil grain crush[J]. Rock and Soil Mechanics, 2004, 24(S0): 661-665. (in Chinese))
    [17] HU W, YIN Z Y, DANO C, HICHER P Y. A constitutive model for granular materials considering grain breakage[J]. Science in China Series E, 2011, 54(8): 2188-2196.
    [18] CHAMBERLAIN E, GROVES C, PERHAM R. The mechanical behavior of frozen earth materials under high pressure triaxial test conditions[J]. Géotechnique, 1972, 22(3): 469-483.
    [19] 马 巍, 吴紫汪, 常小晓, 等. 围压作用下冻结砂土微结构变化的电镜分析[J]. 冰川冻土, 1995, 17(2):152-158. (MA Wei, WU Zi-wang, CHANG Xiao-xiao, et al. Monitoring the change of structure in frozen soil under confining pressures by electron microscope[J]. Journal of Glaciology and Geocryology, 1995, 17(2): 152-158. (in Chinese))
    [20] 马 巍, 吴紫汪, 张立新, 等. 高围压下冻土强度弱化机理分析[J]. 冰川冻土, 1999, 21(1):27-31. (MA Wei, WU Zi-wang, ZHANG Li-xin, et al. Analyses of process on the strength decrease in frozen soils under high confining pressures[J]. Journal of Glaciology and Geocryology, 1999, 21(1): 27-31. (in Chinese))
    [21] 李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004. (LI Guang-xin. Advanced soil mechanics[M]. Beijing: Tsinghua University Press, 2002. (in Chinese))
计量
  • 文章访问数:  405
  • HTML全文浏览量:  9
  • PDF下载量:  425
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-05
  • 发布日期:  2015-03-23

目录

    /

    返回文章
    返回