• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

地基固结和再固结过程中桩基础轴力与沉降计算方法

王睿, 曹威, 张建民

王睿, 曹威, 张建民. 地基固结和再固结过程中桩基础轴力与沉降计算方法[J]. 岩土工程学报, 2015, 37(3): 512-518. DOI: 10.11779/CJGE201503015
引用本文: 王睿, 曹威, 张建民. 地基固结和再固结过程中桩基础轴力与沉降计算方法[J]. 岩土工程学报, 2015, 37(3): 512-518. DOI: 10.11779/CJGE201503015
WANG Rui, CAO Wei, BRANDENBERG Scott. Method for calculating axial force and settlement of pile foundation in consolidating and reconsolidating ground[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 512-518. DOI: 10.11779/CJGE201503015
Citation: WANG Rui, CAO Wei, BRANDENBERG Scott. Method for calculating axial force and settlement of pile foundation in consolidating and reconsolidating ground[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 512-518. DOI: 10.11779/CJGE201503015

地基固结和再固结过程中桩基础轴力与沉降计算方法  English Version

基金项目: 国家自然科学基金项目(51038007,51079074)
详细信息
    作者简介:

    王 睿(1987- ),男,博士,主要从事岩土工程抗震方面研究。E-mail: wangrui_05@mail.thu.edu.cn。

  • 中图分类号: TU473

Method for calculating axial force and settlement of pile foundation in consolidating and reconsolidating ground

  • 摘要: 在地基固结和液化后再固结过程中,土体会对桩基础产生负摩阻力。负摩阻力作用下桩基础的轴力和沉降常采用中性面方法计算,但事实上中性面方法的几个基本假定可能导致计算结果相对实际产生显著偏差。针对地基固结和震后再固结过程中负摩阻力引起的桩基础的轴力和沉降进行研究,采用随固结过程更新桩土摩擦力峰值的非线性温克尔地基梁方法,建立相应计算方法。该方法能够充分考虑固结过程对桩基础轴力和最终沉降的影响,并给出轴力和沉降的变化过程。与离心模型试验对比的结果显示,在采用合理的固结计算方式的基础上,该方法能够有效地计算地基固结和震后再固结过程中桩基础的轴力与沉降,对沉降的计算精度高于传统中性面方法。
    Abstract: The neutral plane solution has been widely used to estimate downdrag settlements and drag loads mobilized in piles in consolidating soil profiles. However, some of the basic assumptions made by the neutral plane solution may cause the calculated results to significantly deviate from the actual values. A beam on nonlinear Winkler foundation (BNWF) solution, in which the shaft friction capacity is updated as consolidation progresses proportional to the effective stress, is proposed to analyze the axial force and settlement of piles during consolidation and post-earthquake reconsolidation. The proposed method fully considers the effect of consolidation process on the axial force and final settlement of piles. The axial force and downdrag settlement by the proposed BNWF solution is compared with the measured ones from centrifuge tests on piles in both consolidating and reconsolidating ground. The proposed method produces more accurate estimates of pile settlement than the traditional neutral plane solution.
  • [1] 刘金砺, 高文生, 邱明兵. 建筑桩基技术规范应用手册[M]. 北京: 中国建筑工业出版社, 2010. (LIU Jin-li, GAO Wen-sheng, QIU Ming-bing. Application handbook for building pile foundation technical standard[M]. Beijing: China Archetecture and Building Press, 2010. (in Chinese))
    [2] BJERRUM L, JOHANNESSEN I J, EIDE O. Reduction of negative skin friction on steel piles to rock[C]// Proceedings 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico City, 1969: 27-34.
    [3] FELLENIUS B H. Downdrag on long piles in clay due to negative skin friction[J]. Canadian Geotechnical Journal, 1972, 9(4): 323-337.
    [4] FELLENIUS B H. Negative skin friction and settlement of piles[C]// Proceedings of the Second International Seminar, Pile Foundations, Nanyang Technological Institute. Singapore, 1984: 1-12.
    [5] POULOS H G, DAVIS E H. Pile foundation analysis and design[M]. New York: Wiley, 1980.
    [6] JGJ94—2008 建筑桩基技术规范[S]. 北京: 中国建筑工业出版社, 2008. (JGJ94—2008 Technical code for building pile foundations[S]. Beijing: China Archetecture and Building Press, 2008. (in Chinese))
    [7] American Association of State Highway and Transportation Officials(AASHTO). LRFD bridge design specifications[S]. 3rd ed. Washington D C, 2004.
    [8] 黄 挺, 龚维明, 戴国亮, 等. 桩基负摩阻力时间效应试验研究[J]. 岩土力学, 2013, 34(10): 2841-2846. (HUANG Ting, GONG Wei-ming, DAI Guo-liang, et al. Experimental study of time effect of negative skin friction on pile[J]. Rock and Soil Mechanics, 2013, 34(10): 2841-2846. (in Chinese))
    [9] 陈仁朋, 周万欢, 曹卫平, 等. 改进的桩土界面荷载传递双曲线模型及其在单桩负摩阻力时间效应研究中的应用[J]. 岩土工程学报, 2007, 29(6): 824-829. (CHEN Ren-peng, ZHOU Wan-huan, CAO Wei-ping, et al. Improved hyperbolic model of load-transfer for pile-soil interface and its application in study of negative friction of single piles considering time effect[J]. Chinexe Journal of Geotechnical Engineering, 2007, 29(6): 824-829. (in Chinese))
    [10] LEE C J, NG C W W. Development of down-drag on piles and pile groups in consolidating soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(9): 905-914.
    [11] JEONG S, LEE J, LEE C J. Slip effect at the pile-soil interface on dragload[J]. Computer and Geotechnics, 2004, 31: 115-126.
    [12] SUN T K, YAN W M. Development of neutral plane on a pile in a consolidating ground[C]// Proceedings of the 2nd International Symposium on Computational Mechanics. Hong Kong, 2010: 1594-1599.
    [13] WONG K S, TEH C I. Negative skin friction on piles in layered soil deposits[J]. Journal of Geotechnical Engineering, 1995, 121(6): 457-465.
    [14] STRAND S R. Liquefaction mitigation using vertical composite drains and liquefaction-induced downdrag on piles: implications for deep foundation design[D]. Utah: Brigham Young University, 2008.
    [15] STRINGER M E, MADABHUSHI S. Re-mobilization of pile shaft friction after an earthquake[J]. Canadian Geotechnical Journal, 2013, 50(9): 979-988.
    [16] FELLENIUS B H, SIEGEL T C. Pile drag load and downdrag in a liquefaction event[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(9): 1412-1416.
    [17] BOULANGER R W, BRANDENBERG S J. Neutral plane solution for liquefaction-induced downdrag on vertical piles[C]// Proceedings ASCE Geo-Trans Conference. California, 2004: 27-31.
    [18] SIMO J C, HUGHES T J R. Computational Inelasticity[M]. Springer: Berlin Heidelberg, 1998.
    [19] MCKENNA F, FENVES G L. Open Sees Manual[EB/OL]. PEER Center, 2001, http: //OpenSees.berkeley.edu.
    [20] REESE L C, O'NEILL M W. Drilled shafts: construction procedures and design methods[R]. Virginia: U.S. Department of Transportation, Federal Highway Administration, Office of Implementation, 1988.
    [21] MOSHER R L. Load transfer criteria for numerical analysis of axial loaded piles in sand[R]. Mississippi: US Army Engineering Waterways Experimental Station, Automatic Data Processing Center, 1984.
    [22] VIJAYVERGIYA V N. Load-movement characteristics of piles[C]// Proceedings Ports 77 Conference. California: American Society of Civil Engineers, 1977.
    [23] SEED H B, PHILIPPE P M, LYSMER J. The generation and dissipation of pore water pressures during soil liquefaction[R]. California: Report, EERC-75-26, Berkeley, 1975.
    [24] SHAHIR H, PAK A, TAIEBAT M, JEREMIC B. Evaluation of variation of permeability in liquefiable soil under earthquake loading[J]. Computers and Geotechnics, 2012, 40: 74-88.
    [25] LAM S Y, NG C W W, LEUNG C F, et al. Centrifuge and numerical modeling of axial load effects on piles in consolidating ground[J]. Canadian Geotechical Journal, 2009, 46(1): 10-24.
    [26] LADD C C. Stability evaluation during staged construction[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1991, 117(4): 540-615.
计量
  • 文章访问数:  410
  • HTML全文浏览量:  2
  • PDF下载量:  467
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-15
  • 发布日期:  2015-03-23

目录

    /

    返回文章
    返回