• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

苏州地区大尺度深基坑变形性状实测分析

廖少明, 魏仕锋, 谭勇, 柳骏茜

廖少明, 魏仕锋, 谭勇, 柳骏茜. 苏州地区大尺度深基坑变形性状实测分析[J]. 岩土工程学报, 2015, 37(3): 458-469. DOI: 10.11779/CJGE201503009
引用本文: 廖少明, 魏仕锋, 谭勇, 柳骏茜. 苏州地区大尺度深基坑变形性状实测分析[J]. 岩土工程学报, 2015, 37(3): 458-469. DOI: 10.11779/CJGE201503009
LIAO Shao-ming, WEI Shi-feng, TAN Yong, LIU Jun-xi. Field performance of large-scale deep excavations in Suzhou[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 458-469. DOI: 10.11779/CJGE201503009
Citation: LIAO Shao-ming, WEI Shi-feng, TAN Yong, LIU Jun-xi. Field performance of large-scale deep excavations in Suzhou[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 458-469. DOI: 10.11779/CJGE201503009

苏州地区大尺度深基坑变形性状实测分析  English Version

基金项目: 国家自然科学基金项目(51378389); 上海市教育委员会科技创新重点项目(13zz027)
详细信息
    作者简介:

    廖少明(1966- ),男,湖北天门人,博士,教授,主要从事深基坑工程、盾构法隧道设计与施工的教学与科学研究工作。E-mail: liaosm@126.com。

  • 中图分类号: TU470.3

Field performance of large-scale deep excavations in Suzhou

  • 摘要: 以苏州广播电视总台现代传媒广场大尺度深基坑(面积为33500 m2)为工程背景,并收集了该地区11个采用钻孔灌注桩围护、顺作法施工的方形基坑(长宽比1.01~2.68)及至少23个采用地下连续墙围护的长条形地铁车站基坑的实测数据,全面地对比分析了苏州地区采用不同挡土结构、不同形状的大尺度深基坑的变形性状。研究结果表明:①方形基坑连续墙最大侧移值(δhm)平均值为0.08%He;地铁车站基坑连续墙δhm平均值为0.20%He;②方形基坑和地铁车站基坑的围护结构最大侧移点埋深(Hm)分别落于(He-10,He+5)和(He-7,He+8)范围内。采用混凝土支撑的基坑的Hm稍小于采用钢支撑的基坑的Hm;③同样采用地下连续墙围护的本工程方形基坑和长条形地铁车站基坑的墙后地表沉降最大值(δvm)的范围分别为(0.01%~0.09%)He和(0.04%~0.27%)He。地铁车站基坑墙后地表沉降影响范围约为4.5He,大于方形基坑墙后地表沉降的影响范围;④本工程方形基坑和地铁车站基坑δvm/δhm的范围分别为0.13~1.07和0.22~1.65;⑤方形基坑和地铁车站基坑的立柱隆起值(δcu)分别为(0.07%~0.26%)He和(0.10%~0.23%)He;⑥大尺度方形基坑和地铁车站基坑表观土压力包络线峰值分别为0.80γHe和0.87γHe,皆出现在开挖面以下(0.21~0.64)He处。采用Terzaghi和Peck及日本土木学会建议的土压力分布模式会显著低估该地区大尺度深基坑表观土压力峰值。
    Abstract: The performance of large-scale deep excavations in Suzhou, China is comprehensively examined based on a great deal of field data, concerining the excavation of Suzhou Modern Media Plaza (SMMP), 11 rectangular excavations (i.e., aspect ratio of length to width is around 1.01~2.68) constructed by the bottom-up method and supported by auger-cast-in-place piles, and at least 23 long and narrow metro station excavations supported by diaphragm walls in the same area reported in literatures. On the basis of the analysis of monitoring data, some major findings are obtained: (1) the average of the maximum lateral wall deflection, δhm, is 0.08%He for the rectangular excavations and 0.20%He for the metro excavations, where He is the excavation depth; (2) the depth Hm, where δhm occurs, falls between Hm = He-10 and Hm = He + 5 for the rectangular excavations and between Hm = He-7 and Hm = He + 8 for the metro excavations. Hm of the excavation propped by steel-reinforced concrete struts is a little smaller than that propped by steel pipe struts; (3) the maximum ground surface settlement, δvm, is around (0.01%~0.09%) He for the rectangular excavation of SMMP supported by diaphragm walls and around (0.04%~0.27%) He for the metro excavations. The ground settlement zone is about 4.5He behind the retaining walls for the metro stations which is larger than that of the rectangular excavations; (4) the ratio of δvm/δhm is around 0.13~1.07 for the excavation of SMMP and around 0.22~1.65 for the metro excavations; (5) the vertical column movement, δcu, is around (0.07%~0.26%) He for the rectangular excavations and around (0.10%~0.23%) He for the
  • [1] TAN Y, LI M W. Measured performance of a 26 m deep top-down excavation in downtown Shanghai[J]. Canadian Geotechnical Journal, 2011, 48: 704-719.
    [2] LIAO S M, FAN Y Y, SHI Z H, et al. Optimization study on the reconstruction and expansion of an underground rail transit center in Shanghai soft ground[J]. Tunnelling and Underground Space Technology, 2013, 38: 435-446.
    [3] 魏仕锋. 临近深基坑地铁车站结构的安全及保护标准研究[D]. 上海: 同济大学, 2014. (WEI Shi-feng. Investigation on safety and protection criteria of metro stations adjacent to deep excavations[D]. Shanghai: Tongji University, 2014. (in Chinese))
    [4] LIAO S M, LIU J H, WANG R L, et al. Shield tunneling and environment protection in Shanghai soft ground[J]. Tunnelling and Underground Space Technology, 2009, 24(4): 454-465.
    [5] 青二春. 地铁隧道上方大面积卸载下的变形及控制模式研究[D]. 上海: 同济大学, 2007. (QING Er-chun. Research on subway tunnel deformation due to large-scale unloading and its control[D]. Shanghai: Tongji University, 2007. (in Chinese))
    [6] TAN Y, WEI B. Performance of an overexcavated metro station and facilities nearby[J]. Journal of Performance of Constructed Facilities, 2012, 26(3): 241-254.
    [7] WANG J H, XU Z H, WANG W D. Wall and ground movements due to deep excavations in Shanghai soft soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(7): 985-994.
    [8] PENG F L, WANG H L, TAN Y, et al. Field measurements and FEM simulation of a tunnel shaft constructed by pneumatic caisson method in Shanghai soft ground[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(5): 516-524.
    [9] TAN Y, WEI B. Observed behaviors of a long and deep excavation construction by cut-and-cover technique in Shanghai soft clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(1): 69-88.
    [10] TAN Y, WANG D L. Characteristics of a large-scale deep foundation pit excavated by the central-island technique in Shanghai soft clay. I: Bottom-up construction of the central cylindrical shaft[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(11): 1875-1893.
    [11] TAN Y, WANG D L. Characteristics of a large-scale deep foundation pit excavated by the central-island technique in Shanghai soft clay. II: Top-down construction of the peripheral rectangular pit[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(11): 1894-1910.
    [12] 武朝军, 陈锦剑, 叶冠林, 等. 苏州地铁车站基坑变形特性分析[J]. 岩土工程学报, 2010, 32(增刊1): 458-462. (WU Chao-jun, CHEN Jin-jian, YE Guan-lin, et al. Deformation characteristics of foundation pits of subway stations in Suzhou[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S1): 458-462. (in Chinese))
    [13] 张德富, 童立元, 刘松玉, 等. 苏州地铁1 号线车站深基坑围护结构变形性状分析[J]. 地下空间与工程学报, 2013, 9(增刊2): 1961-1965. (ZHANG De-fu, TONG Li-yuan, LIU Song-yu, et al. Deformation behavior of support structures of deep excavatons in Suzhou subway line 1[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(S2): 1961-1965. (in Chinese))
    [14] 魏仕锋, 谭 勇, 廖少明, 等. 钱江隧道顺逆结合法深基坑变形性状实测分析[J]. 土木工程学报, 2014, 47(8): 112-119. (WEI Shi-feng, TAN Yong, LIAO Shao-ming, et al. Field measurement of a semi-top-down deep excavation for the shield-launching shaft of Qianjiang tunnel[J]. China Civil Engineering Journal, 2014, 47(8): 112-119. (in Chinese))
    [15] 同济大学建筑设计研究院(集团)有限公司. 苏州广播电视总台现代传媒广场基坑支护开挖设计方案[R]. 上海, 2011. (Architectural Design and Research Institute of Tongji University Co., Ltd. Design of the excavation of Suzhou Modern Media Plaza[R]. Shanghai, 2011. (in Chinese))
    [16] 刘建航. 软土基坑工程中时空效应理论与实践[J]. 岩石力学与工程学报, 1999, 18(增刊): 763-770. (LIU Jian-hang. Time-space-effect theory and practice for excavations in soft clays[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(S0): 763-770. (in Chinese))
    [17] TAN Y, WEI B, ZHOU X, et al. Lessons learned from construction of Shanghai metro stations - Importance of quick excavation, promptly propping, timely casting and segmented construction[J]. Journal of Performance of Constructed Facilities, in press.
    [18] 汪祖民, 马占勇. 苏州国际会展中心深基坑施工安全监测[J]. 地矿测绘, 2003, 19(4): 18-21. (WANG Zu-min, MA Zhan-yong. Construction safety monitoring of deep base pit for international convention & exhibit center in Suzhou[J]. Surveying and Mapping of Geology and Mineral Resources, 2003, 19(4): 18-21. (in Chinese))
    [19] 朱世哲, 杨红亮, 余为东. 搅拌桩中套打灌注桩基坑支护技术研究[J]. 苏州大学学报(工学版), 2010, 30: 236-238. (ZHU Shi-zhe, YANG Hong-liang, YU Wei-dong. Study on the excavation retaining technology of construction of the auger-cast-in-place piles in the mix-in-place columns[J]. Journal of Soochow University (Engineering Science), 2010, 30: 236-238. (in Chinese))
    [20] 王 进, 许 娟. 土体参数对地表沉降影响的数值模拟分析[J]. 苏州科技学院学报(工程技术版), 2012, 25(2): 55-58. (WANG Jin, XU Juan. Numerical simulation analysis of effects of soil parameters on ground settlement[J]. Journal of Suzhou University of Science and Technology (Engineering and Technology), 2012, 25(2): 55-58. (in Chinese))
    [21] 许 娟, 丁海平. 苏州东方之门基坑工程的变形监测与分析[J]. 岩土工程技术, 2011, 25(1): 32-37. (XU Juan, DING Hai-ping. Monitoring and analyses of the foundation pit deformation for Suzhou Oriental Gate[J]. Geotechnical Engineering Technique, 2011, 25(1): 32-37. (in Chinese))
    [22] 韩树山, 程月红, 陈 赟. 苏州地区某深基坑悬臂双排桩支护技术[J]. 施工技术, 2012, 41(379): 22-25. (HAN Shu-shan, CHENG Yue-hong, CHEN Yun. Double rows of cantilever bored pile retaining technology for a deep foundation in Suzhou[J]. Construction Technology, 2012, 41(379): 22-25. (in Chinese))
    [23] 李苏春, 袁运涛. 苏州凤凰国际书城基坑监测分析[J]. 水文地质工程地质, 2013, 40(1): 129-133. (LI Su-chun, YUAN Yun-tao. Analysis of excavation monitoring for the Phoenix International Bookstore in Suzhou[J]. Hydrogeology & Engineering Geology, 2013, 40(1): 129-133. (in Chinese))
    [24] 袁运涛, 李苏春. 临近地铁车站深基坑开挖综合控制研究[J]. 地下空间与工程学报, 2013, 9(4): 843-847. (YUAN Yun-tao, LI Su-chun. Integrated control of deep excavation nearby the subway station[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(4): 843-847. (in Chinese))
    [25] 吴 洋. 基坑支护的优化设计与应用研究[D]. 南京: 南京大学, 2013. (WU Yang. The foundation pit of the optimization design and application research[D]. Nanjing: Nanjing University, 2013. (in Chinese))
    [26] 李苏春, 袁运涛. 两紧邻基坑支护设计及监测分析[J]. 工业建筑, 2012, 42(10): 89-94. (LI Su-chun, YUAN Yun-tao. Analysis of excavation retaining design and monitoring for two adjacent foundations[J]. Industrial Construction, 2012, 42(10): 89-94. (in Chinese))
    [27] 王晚中, 李为民, 温文富. 苏州某软土深基坑支护设计[J]. 山西建筑, 2011, 37(12): 51-52. (WANG Wan-zhong, LI Wei-min, WEN Wen-fu. Support design of deep foundation pit of a soft soil in Suzhou[J]. Shanxi Architecture, 2011, 37(12): 51-52. (in Chinese))
    [28] 张林元, 周山龙, 徐忠民, 等. 邻近既有轨道交通区间隧道深基坑施工技术研究[J]. 苏州大学学报(工学版), 2012, 32(6): 76-82. (ZHANG Lin-yuan, ZHOU Shan-long, XU Zhong-min, et al. Research on construction technology of deep excavation adjacent to the existing running tunnels of track traffic[J]. Journal of Soochow University (Engineering Science Edition), 2012, 32(6): 76-82. (in Chinese))
    [29] 刘建国. 排桩支护在软土地层超深基坑中的应用[J]. 隧道建设, 2011, 31(2): 215-219, 227. (LIU Jian-guo. Application of soldier pile retaining system in super-deep foundation pit in soft soil[J]. Tunnel Construction, 2011, 31(2): 215-219, 227. (in Chinese))
    [30] 周小华. 苏州轨道交通苏州火车站站结构设计[J]. 水利与建筑工程学报, 2010, 8(4): 150-154. (ZHOU Xiao-hua. Structural design for subway station in Suzhou trace transport[J]. Journal of Water Resources and Architectural Engineering, 2010, 8(4): 150-154. (in Chinese))
    [31] 贾彩虹, 杨国忠, 张雪颖. 苏州地铁超宽超深基坑工程监测与分析[J]. 铁道建筑, 2010(10): 61-65. (JIA Cai-hong, YANG Guo-zhong, ZHANG Xue-ying. Field measurement of an ultra-wide and ultra-deep metro excavation in Suzhou[J]. Railway Engineering, 2010(10): 61-65. (in Chinese))
    [32] 陈 彪. 地铁车站深基坑开挖与支护方案优化的研究[D]. 合肥: 合肥工业大学, 2011. (CHEN Biao. Optimization study on excavating and supporting structure of deep foundation pit in subway station[D]. Hefei: Hefei University of Technology, 2011. (in Chinese))
    [33] 陈 彪, 吕小军, 钱德玲. 数值分析在深大基坑开挖过程中的应用[J]. 工业建筑, 2011, 41(增刊): 465-469. (CHEN Biao, LÜ Xiao-jun, QIAN De-ling. The applications of numerical analysis of oversize & deep excavation[J]. Industrial Construction, 2011, 41(S0): 465-469. (in Chinese))
    [34] 穆永江. 苏州地铁某车站深基坑围护结构监测分析[J]. 石家庄铁道学院学报(自然科学版), 2009, 22(3): 38-43. (MU Yong-jiang. Monitoring analysis on exterior-protected construction of foundation-pit of subway in Suzhou[J]. Journal of Shijiazhuang Railway Institute (Natural Science), 2009, 22(3): 38-43. (in Chinese))
    [35] 陈树杰, 廖振宇. 苏州乐园站深基坑监测分析实例[J]. 铁道勘察, 2010(3): 27-30. (CHEN Shu-jie, LIAO Zhen-yu. A practical example for monitoring and analysis on deep foundation pits at Leyuan station in Suzhou[J]. Railway Investigation and Surveying, 2010(3): 27-30. (in Chinese))
    [36] 李雁艳. 地铁深基坑围护结构设计与施工监测对比分析[J]. 铁道勘测与设计, 2011(5): 82-85. (LI Yan-yan. Design and construction of retaining structures and analysis of field measurements for a deep metro excavation[J]. Railway Survey and Design, 2011(5): 82-85. (in Chinese))
    [37] 陈丽萍. 地铁深基坑围护结构设计与监测数据分析[J]. 铁道勘测与设计, 2010(2): 24-27. (CHEN Li-ping. Design of retaining structures and analysis of field measurements for a deep metro excavation[J]. Railway Survey and Design, 2010(2): 24-27. (in Chinese))
    [38] 李 昂. 软土地区半盖挖地铁车站立柱参数研究[D]. 长春: 吉林建筑工程学院, 2012. (LI Ang. Parameters research of column in subway station excavated by semi-top-down method with soft soil area[D]. Changchun: Jilin Jianzhu University, 2012. (in Chinese))
    [39] 娄承滨, 施 毅, 童立元. 苏州地铁某车站深基坑变形及支撑轴力规律研究[J]. 徐州工程学院学报(自然科学版), 2009, 24(增刊): 107-109, 115. (LOU C heng-bin, SHI Yi, TONG Li-yuan. Study on the deformations and the law of the axial strut forces of a metro station excavation in Suzhou[J]. Journal of Xuzhou Institute of Technology (Natural Science), 2009, 24(S0): 107-109. (in Chinese))
    [40] 燕喜军, 朱炎兵. 考虑时空效应的软土地区基坑变形分析[J]. 铁道勘测与设计, 2012(1): 54-58. (YAN Xi-jun, ZHU Yan-bing. Deformation behaviors of an excavation in soft clays considering the time-space-effect[J]. Railway Survey and Design, 2012(1): 54-58. (in Chinese))
    [41] 王 强, 刘松玉, 童立元, 等. 多支撑地下连续墙动态开挖过程中 m 值反分析[J]. 东南大学学报(自然科学版), 2011, 41(2): 352-358. (WANG Qiang, LIU Song-yu, TONG Li-yuan, et al. Back-analysis of m value of multi-braced slurry wall in staged excavation[J]. Journal of Southeast University (Natural Science), 2011, 41(2): 352-358. (in Chinese))
    [42] 徐修发. 苏州地铁车站深基坑工程的监测与分析[J]. 科技情报开发与经济, 2009, 19(12): 206-208. (XU Xiu-fa. The monitoring of and analysis on the deep excavation of Suzhou tube station[J]. Sci-tech Information Development & Economy, 2009, 19(12): 206-208. (in Chinese))
    [43] OU C Y, HSIEH P G, CHIOU D C. Characteristics of ground surface settlement during excavation[J]. Canadian Geotechnical Journal, 1993, 30(5): 758-767.
    [44] 周小华. 苏州轨道交通1号线深基坑围护结构设计的思考[J]. 水利与建筑工程学报, 2010, 8(4): 166-168, 208. (ZHOU Xiao-hua. Design idea for deep excavation bracing structure in No.1 line of Suzhou Trace transport[J]. Journal of Water Resources and Architectural Engineering, 2010, 8(4): 166-168, 208. (in Chinese))
    [45] MOORMANN C. Analysis of wall and ground movements due to deep excavation in soft soils based on a new worldwide database[J]. Soils and Foundations, 2004, 44(1): 87-98.
    [46] CLOUGH G W, SMITH E M, SWEENEY B P. Movement control of excavation support system by iterative design[C]// Proc Foundation Engineering: Current Principals and Practices, ASCE. New York, 1989: 869-884.
    [47] CLOUGH G W, O’ROURKE T D. Construction induced movements of in situ walls[M]. Reston: Geotechnical Special Publication, Design and Performance of Earth Retaining Structures (GSP 25), ASCE, 1990: 439-470.
    [48] LONG M. Database for retaining wall and ground movements due to deep excavations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(3): 203-224.
    [49] PECK R B. Deep excavations & tunneling in soft ground. State-of-the-art-report[C]// Proc 7th Int Conf on Soil Mechanics and Foundation Engineering, International Society for Soil mechanics and Geotechnical Engineering. Mexico, 1969: 225-290.
    [50] HASHASH Y M A, OSOULI A, MARULANDA C. Central artery/tunnel project excavation induced ground deformations[J]. Journal of Geotechnical and Geoen- vironmental Engineering, 2008, 134(9): 1399-1406.
    [51] HSIEH P G, OU C Y. Shape of ground surface settlement profiles caused by excavation[J]. Canadian Geotechnical Journal, 1998, 35(6): 1004-1017.
    [52] TERZAGHI, K, PECK, R B. Soil mechanics in engineering practice[M]. 2nd ed. New York: Wiley, 1967.
  • 期刊类型引用(42)

    1. 朱赛楠,殷跃平,铁永波,撒兰鹏,高延超,贺宇,赵慧. 乌蒙山区巨型古滑坡变形特征与复活机理研究——以大关古滑坡为例. 岩土工程学报. 2025(02): 305-314 . 本站查看
    2. 胡贵良,刘文,鄢勇,范雄安,张毅,杜光远,熊皓,王猛,余天彬. 金沙江上游色拉古滑坡复活特征与堵江溃决模拟分析. 地质学报. 2025(02): 602-615 . 百度学术
    3. 杨豹,赵瑞志,王海波,李晓光,吕钊,赵阳,王梦云. 遥感技术对地质灾害早期识别和动态监测——以昌波乡至羊拉乡段为例. 科学技术与工程. 2024(05): 1823-1836 . 百度学术
    4. 殷跃平,高少华. 高位远程地质灾害研究:回顾与展望. 中国地质灾害与防治学报. 2024(01): 1-18 . 百度学术
    5. Yiqiu Yan,Changbao Guo,Yanan Zhang,Zhendong Qiu,Caihong Li,Xue Li. Development and Deformation Characteristics of Large Ancient Landslides in the Intensely Hazardous Xiongba-Sela Section of the Jinsha River, Eastern Tibetan Plateau, China. Journal of Earth Science. 2024(03): 980-997 . 必应学术
    6. 李林,李涛,何治林,李树建,董健,王彪. 基于试验模拟的滑坡泥石流灾害链风险监测预警. 水土保持通报. 2024(02): 167-175 . 百度学术
    7. 蒋涛,崔圣华,许向宁,蒙明辉. 四川高位滑坡发育特征及典型地质力学模式. 地质灾害与环境保护. 2024(02): 1-11 . 百度学术
    8. 李金秋,张永双,任三绍,冉丽娜. 金沙江上游扎马古滑坡复活特征及堵河危险性分析. 水利学报. 2024(04): 481-492 . 百度学术
    9. 武德宏,郝利娜,严丽华,唐烽顺,郑光. 金沙江滑坡群InSAR探测与形变因素分析. 自然资源遥感. 2024(03): 259-266 . 百度学术
    10. 冉涛,徐如阁,李奇. 川藏交通廊道怒江段斜坡地质灾害发育特征及主控因素分析. 自然灾害学报. 2024(04): 176-187 . 百度学术
    11. 徐正宣,林之恒,刘云鹏,聂晓芳,任利,张志龙. 复杂孕灾环境下隧道进口斜坡稳定性分析与评价. 西南交通大学学报. 2024(05): 1068-1077+1085 . 百度学术
    12. 蒋佳岐,吴中海,黄小龙,黄飞鹏,王世锋. 金沙江干流巨型滑坡发育特征及其形成机理. 地震科学进展. 2024(10): 680-695 . 百度学术
    13. 郑顺祥,王军,鄢勇,刘文,赵恒,杨钧翔,范雄安,张毅,王猛,余天彬. 金沙江上游沙东滑坡发育特征与堵江溃决预测分析. 水文地质工程地质. 2024(06): 160-170 . 百度学术
    14. 郭海湘,区歌阳,杨钰莹. 1987—2022年中国自然灾害链研究进展与趋势——基于CiteSpace的计量分析. 安全与环境工程. 2024(06): 118-133 . 百度学术
    15. 谭银龙,许万忠,曹家菊,罗丹,王本栋,谯立家,周谊. 基于Midas-GTS的三峡库区金鸡岭滑坡成因机制与稳定性分析. 水文地质工程地质. 2023(01): 113-121 . 百度学术
    16. 牛敏杰,师芸,吕杰,赵侃,石龙龙. 基于SBAS-InSAR技术的广安村滑坡形变监测分析. 地理空间信息. 2023(01): 79-84 . 百度学术
    17. 王庆芳,郑志军,董继红,余天彬,刘文,黄细超. 基于多源遥感技术的红层滑坡识别与监测研究. 人民长江. 2023(01): 111-118 . 百度学术
    18. 高秉海,何毅,张立峰,姚圣,杨旺,陈毅,何旭,赵占骜,陈鹤升. 顾及In SAR形变的CNN滑坡易发性动态评估——以刘家峡水库区域为例. 岩石力学与工程学报. 2023(02): 450-465 . 百度学术
    19. 董建军,梅媛,闫斌,刘士乙. 高海拔排土场边坡安全稳定性的PS-InSAR监测. 防灾减灾工程学报. 2023(01): 149-157 . 百度学术
    20. 贾丽娜,李瑞冬,魏新平. 基于InSAR技术的黄土滑坡及周边斜坡变形识别. 地下水. 2023(02): 121-124 . 百度学术
    21. 王之栋,唐伟,马志刚,李雨宸,杨本勇,李维庆,李永鑫. 九寨沟地区高位滑坡隐患InSAR-LiDAR早期识别. 测绘通报. 2023(05): 9-15 . 百度学术
    22. 李沙,张立舟,周成涛,刘洋,陈锐. 基于SBAS-InSAR的大型滑坡变形分区及时序监测研究. 人民长江. 2023(06): 103-111 . 百度学术
    23. 赵子昕,汪发武,朱国龙,彭星亮. 混杂岩形成机制及非均质力学特性研究进展. 工程地质学报. 2023(03): 796-814 . 百度学术
    24. 张彦锋,高杨,李滨,朱赛楠. 青藏高原混杂岩带及其地质灾害发育特征分析. 工程地质学报. 2023(03): 981-998 . 百度学术
    25. 刘印明. 区域降雨型浅层滑坡失稳机理研究. 科技创新与生产力. 2023(07): 30-33 . 百度学术
    26. 李晓斌,白海军. 高位远程古滑坡既有变形特征和后续变形发展规律研究. 大地测量与地球动力学. 2023(11): 1129-1135 . 百度学术
    27. 陈兴长,郭晓军,陈慧. 金沙江上游德格-白玉段流域地貌特征及影响因素分析. 第四纪研究. 2023(05): 1269-1281 . 百度学术
    28. 吴明堂,房云峰,沈月,戴可人,姚义振,陈建强,冯文凯. 基于短基线DInSAR的白鹤滩库区蓄水期滑坡隐患广域快速动态识别. 遥感技术与应用. 2023(05): 1054-1061 . 百度学术
    29. 包馨,张瑞,刘安梦云,王婷,向卫,刘国祥. 联合升降轨时序InSAR的金沙江滑坡群隐患识别. 北京理工大学学报. 2023(11): 1135-1145 . 百度学术
    30. 刘媛媛,陈人杰,陈能辉. 西藏色拉滑坡时序InSAR二维形变反演与预测. 北京理工大学学报. 2023(11): 1115-1124 . 百度学术
    31. 陈新咏. 某高位滑坡强变形监测及成因机制分析. 福建建材. 2022(01): 64-67+73 . 百度学术
    32. 易思材,张明文,李帅. 云南某梯田滑坡灾害治理施工技术. 建筑机械化. 2022(02): 64-66 . 百度学术
    33. 丁永辉,张勤,杨成生,王猛,丁辉. 基于高分遥感的金沙江流域滑坡识别——以巴塘县王大龙村为例. 测绘通报. 2022(04): 51-55 . 百度学术
    34. 王海鹏,高瑞丹,宁树理,王航,寻怀军. 重庆市丰太六组前缘滑坡特征分析及治理方案. 工程建设. 2022(06): 36-41 . 百度学术
    35. 戴可人,沈月,吴明堂,冯文凯,董秀军,卓冠晨,易小宇. 联合InSAR与无人机航测的白鹤滩库区蓄水前地灾隐患广域识别. 测绘学报. 2022(10): 2069-2082 . 百度学术
    36. 铁永波,葛华,高延超,白永健,徐伟,龚凌枫,王家柱,田凯,熊小辉,范文录,张宪政. 二十世纪以来西南地区地质灾害研究历程与展望. 沉积与特提斯地质. 2022(04): 653-665 . 百度学术
    37. 钟彬,柳志云,李向新,吕加颖. 滑坡形变的升降轨时序干涉合成孔径雷达监测与分析. 激光与光电子学进展. 2022(24): 247-254 . 百度学术
    38. 杨成生,董继红,朱赛楠,熊国华. 金沙江结合带巴塘段滑坡群InSAR探测识别与形变特征. 地球科学与环境学报. 2021(02): 398-408 . 百度学术
    39. 朱赛楠,殷跃平,黄波林,张枝华,王平,王文沛,赵慧,张晨阳. 三峡库区大型单斜顺层新生滑坡变形特征与失稳机理研究. 工程地质学报. 2021(03): 657-667 . 百度学术
    40. 吴瑞安,马海善,张俊才,杨志华,李雪,倪嘉伟,钟宁. 金沙江上游沃达滑坡发育特征与堵江危险性分析. 水文地质工程地质. 2021(05): 120-128 . 百度学术
    41. 黄细超,余天彬,王猛,朱赛楠,宋班,刘文. 金沙江结合带高位远程滑坡灾害链式特征遥感动态分析——以白格滑坡为例. 中国地质灾害与防治学报. 2021(05): 40-51 . 百度学术
    42. 熊国华,杨成生,朱赛楠,董继红,张勤. 基于MSBAS技术的金沙江上游色拉滑坡形变分析. 中国地质灾害与防治学报. 2021(05): 1-9 . 百度学术

    其他类型引用(19)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 61
出版历程
  • 收稿日期:  2014-07-13
  • 发布日期:  2015-03-23

目录

    /

    返回文章
    返回