• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

土工合成材料流变参数合理选择的研究

包承纲, 童军, 丁金华

包承纲, 童军, 丁金华. 土工合成材料流变参数合理选择的研究[J]. 岩土工程学报, 2015, 37(3): 410-418. DOI: 10.11779/CJGE201503003
引用本文: 包承纲, 童军, 丁金华. 土工合成材料流变参数合理选择的研究[J]. 岩土工程学报, 2015, 37(3): 410-418. DOI: 10.11779/CJGE201503003
BAO Cheng-gang, TONG Jun, DING Jin-hua. Reasonable selection of rheological parameters of geosynthetics[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 410-418. DOI: 10.11779/CJGE201503003
Citation: BAO Cheng-gang, TONG Jun, DING Jin-hua. Reasonable selection of rheological parameters of geosynthetics[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 410-418. DOI: 10.11779/CJGE201503003

土工合成材料流变参数合理选择的研究  English Version

基金项目: 中央级公益性科研院所基本科研业务费资助项目(CKSF2014060/YT))
详细信息
    作者简介:

    包承纲(1935- ),男,教授级高级工程师,主要从事岩土工程、水利工程等研究。E-mail: cgbao35@sina.com。

  • 中图分类号: TU43

Reasonable selection of rheological parameters of geosynthetics

  • 摘要: 工程中应用土工合成材料时必需考虑其流变特性的影响,流变特性一般指蠕变、松弛、长期强度等方面的性质。当前在土工合成材料设计强度值的选择中,为考虑蠕变影响,往往对其极限强度乘一个蠕变折减系数后加以使用。这个系数如何取值对工程的安全性和经济性影响很大。由于对该系数研究不够,国际和国内都存在很大分歧,一般都取得十分保守。土工合成材料蠕变试验成果表明,蠕变的影响与作用的荷载水平关系很大,当荷载水平小于某一临界值时,材料的变形将渐趋稳定,不会导致蠕变破坏。而根据国内外大量工程实测资料表明,加筋土结构中筋材所受的力很小,仅及设计预测值的几分之一,甚至只有5%,变形也远低于预测值,筋材最大的受力和变形发生在施工结束时。同时,实测资料表明,土体中筋材存在松弛现象,它将减轻蠕变的影响。根据有关的机理分析、试验数据和实测资料,对筋材强度折减系数的合理取值提出了建议。
    Abstract: The influence of rheological properties of geosynthetics in engineering should be considered properly. For this purpose, a creep reduction factor is considered in the design tensile strength. However, the selected value of this factor is too conservative in the current time. Based on the test results, the stress level applied on geosynthetic materials is the critical factor for the influence of creep on rupture. Whereas, according to the monitoring data from international and domestic reinforced structures, the stress level for geosynthetics reinforcement is mostly quite low, and it is only several percent of the design tensile strength. The largest values of stress and deformation in reinforcement appear at the end of construction time. Moreover, some creep tests are performed under the condition without any lateral pressure on test specimen, and the influence of creep will be enlarged. Otherwise, the relaxation property should be concerned for reinforced structures, and it will reduce the influence of creep. Finally, the reasonable value of creep reduction factor is suggested.
  • [1] 包承纲, 丁金华, 汪明元. 极限平衡理论在加筋土结构设计中应用的评述[J]. 长江科学院院报, 2014, 31(3): 1-10. (BAO Cheng-gang, DING Jin-hua, WANG Ming-yuan. Review on limited balance theory applied in the design of reinforced soil structures[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31(3): 1-10. (in Chinese))
    [2] FONYO B, SACCHETTI A. Design software comparison of reinforced steep slopes[C]// 9th International Conference on Geosynthetics. Brazil, 2010: 1819-1822.
    [3] BRÄU G, HEROLD A, LÜKING J, et al. EBGEO 2010-Recommendation for reinforcement with geo- synthetics[C]// 9th International Conference on Geosynthetics. Brazil, 2010: 233-236.
    [4] TATSUOKA F, KOSEKI J, TATEYAMA M. Introduction to Japanese codes for reinforced soil design[C]// 9th International Conference on Geosynthetics. Brazil, 2010: 247-258;
    [5] MONTRI D. A case study of reinforced slope in Thailand: Lumpang-Lamphun highway[C]// 8th International Con- ference on Geosynthetics. Millpress, Rotterdam, 2006: 1109-1112
    [6] 李广信. 关于土工合成材料加筋设计的若干问题[J]. 岩土工程学报, 2013, 35(4): 605-610. (LI Guang-xin. Some problems in design of geosynthetic-reinforced soil structures[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 605-610. (in Chinese))
    [7] MICHAEL Dobie, 何 波. 加筋土结构设计方法及设计安全冗余分析[J]. 长江科学院院报, 2014, 31(3): 115-121. (MICHAEL D, SINDY He. Reinforced soil retaining walls: an outline of design methods and sources of conservatism[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31(3): 115-121. (in Chinese))
    [8] 匡希龙, 周志刚, 王桂尧. 基于特种筋材蠕变试验预应变加筋法应用研究及计算模型[J]. 岩石力学与工程学报, 2007, 26(A01): 3107-3113. (KUANG Xi-long, ZHOU Zhi-gang, WANG Gui-yao. Application study and calculation model of prestrain reinforcement technique based on creep experiment of geosynthetics[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(A01): 3107-3113. (in Chinese))
    [9] 蔡德钩, 史存林, 张千里, 等. 基于格栅蠕变的桩网支承路基中加筋网垫受力变形特性分析[C]// 土工合成材料加筋–机遇与挑战. 青岛, 2009: 177-182. (CAI De-gou, SHI Cun-lin, ZHANG Qian-li, et al. Behavior analysis of deformation for reinforced layer with geogrids in a piled embankment based on creep property[C]// Geosynthetics Reinforcement-Chance & Challenge. Qingdao, 2009: 177-182. (in Chinese))
    [10] Müller-Rochholz Jochen, Retzlaff Jan. Long term performance of geosynthetics[C]// 9th International Conference on Geosynthetics. Brazil, 2010: 455-462.
    [11] YAO S S, HSUAN Y G. Evaluation of creep behavior of high density polyethylene and polyethylene-terephthalate geo- grids[J]. Geotextile and Geomenbranes, 2010, 28(5): 400-421.
    [12] 王 钊. 土工织物的拉伸蠕变特性和预应力加筋堤[J]. 岩土工程学报, 1992, 14(2): 12-20. (WANG Zhao. Tensile and creep properties of geotextiles and pretensioned reinforced embankment[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(2): 12-20. (in Chinese))
    [13] 丁金华, 周武华. HDPE土工格栅在有约束条件下蠕变特性的试验研究[J]. 长江科学院院报, 2012, 29(4): 49-51. (DING Jin-hua, ZHOU Wu-hua. Creep property of HDPE geogrid with sand confinement[J]. Journal of Yangtze River Scientific Research Institute, 2012, 29(4): 49-51. (in Chinese))
    [14] 丁金华, 包承纲, 陈仁朋. 加筋土结构中筋材抗拉强度的取值方法研究[J]. 水利学报, 2012, 43(12): 1464-1469. (DING Jin-hua, BAO Cheng-gang, CHEN Ren-peng. A method to determine the design value of reinforcement tensile strength in reinforced soil structure[J]. Journal of Hydraulic Engineering, 2012, 43(12): 1464-1469. (in Chinese))
    [15] TONG J, GONG B, LIU J. Experimental study and prediction on the long-term creep properties for geogrids at different temperatures[C]// 9th International Conference on Geosynthetics. Brazil, 2010: 873-876.
    [16] BUENO B S. Long-term performance of geosynthetics[C]// 9th International Conference on Geosynthetics. Brazil, 2010: 439-453.
    [17] 杨广庆, 杜学玲, 周乔勇, 等. 土工格栅加筋石灰土挡墙工程特性试验研究[J]. 岩土工程学报, 2010, 32(12): 1904-1909. (YANG Guang-qing, DU Xue-ling, ZHOU Qiao-yong, et al. Field tests on behaviors of geogrid- reinforced lime treated soil retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1904-1909. (in Chinese))
    [18] 何其武, 陈丽丽, 王旭龙. 斜坡地基土工格栅加筋土高边坡现场试验研究[C]// 土工合成材料加筋–机遇与挑战. 青岛, 2009: 368-377. (HE Qi-wu, CHEN Li-li, WANG Xu-long. In-situ tests for a reinforced high-slope with geogrids at tilted foundation[C]// Geosynthtics Reinforcement- Chance & Challenge. Qingdao, 2009: 368-377. (in Chinese))
    [19] ASCHAUER F, WU W, OBERREITER K. Investigation of the behavior of geosynthetic/soil systems in reinforced-soil structures[C]// 8th International Conference on Geosynthetics. Millpress, Rotterdam, 2006: 1049-1052.
    [20] KONGKITKUL W, TATSUOKA F, HIRAKAWA D, et al. Post-construction tensile load and strain behaviour of geogrids arranged in full-scale high walls[C]// 9th International Conference on Geosynthetics. Brazil, 2010, 1605-1610.
    [21] SAYÃO A S F J, BECKER L B, NUNES A L L S, et al. Behavior of a geogrid reinforced soil wall built with clayey silt[C]// 9th International Conference on Geosynthetics. Brazil, 2010: 1685-1688.
    [22] HERLE V. Prediction and performance of reinforced soil structures[C]// 8th International Conference on Geosynthetics. Millpress, Rotterdam, 2006: 1113-1116.
    [23] 胡汉兵, 姜志全, 蔡汉利. 土工格栅施工损伤现场足尺试验研究[J]. 岩土工程学报, 2012, 34(5): 906-910. (HU Han-bing, JIANG Zhi-quan, CAI Han-li. Full-scale field tests on installation damage of geogrids[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 906-910. (in Chinese))
  • 期刊类型引用(21)

    1. 孟珂,王笑梅,杜晓冉,张晓曼,罗娟. 罕见多矿物晶体共生标本的综合鉴定. 矿产综合利用. 2025(01): 200-205 . 百度学术
    2. 刘勇,张志康,魏建平,徐向宇,郜英俊. 柔性刀具冲击破煤能量演化及关键参数. 煤炭学报. 2025(02): 965-974 . 百度学术
    3. 李红丽. 非均质岩石单轴压缩下损伤演化规律数值模拟研究. 有色矿冶. 2024(01): 43-48 . 百度学术
    4. 鞠明和,陶泽军,蔚立元,姜礼杰,郑彦龙,邹春江. 钢粒子迟滞重复冲击破岩硬岩损伤破裂特征研究. 岩土力学. 2024(04): 1242-1255 . 百度学术
    5. 吴泽兵,袁若飞,张文溪,王刚,胡诗尧. PDC混合布齿钻头破碎非均质花岗岩数值模拟. 天然气工业. 2024(05): 105-117 . 百度学术
    6. 周元,吕威帆,王颖轶. 基于块体离散元法的盾构掘进围岩与管片变形模拟研究. 都市快轨交通. 2024(03): 125-134 . 百度学术
    7. 裴书锋,郝文锋,王营利,王一汀,曾凤娟. 双江口水电站花岗岩单轴压缩微观破坏机制研究. 西北水电. 2024(04): 62-68 . 百度学术
    8. 张国桥,孙鹏,吴祥业,王婧雅,郭文斌,田宇航. 基于PFC-GBM非均质模型的砂岩裂纹演化细观规律研究. 中国矿业. 2024(09): 158-169 . 百度学术
    9. 冯龙飞,王双明,王晓东,解嘉豪,窦林名. 煤单轴峰后动态冲击破坏特征及差异机制模拟研究. 煤炭学报. 2024(S2): 714-730 . 百度学术
    10. 马文强,王酒婷. 花岗岩受压宏-细观破坏特征及能量演化规律. 信阳师范学院学报(自然科学版). 2023(02): 314-320 . 百度学术
    11. 张涛,蔚立元,苏海健,高亚楠,贺虎,魏江波. 基于多级力链网络分析的花岗岩压缩特性的矿物尺寸效应研究. 岩石力学与工程学报. 2023(08): 1988-2003 . 百度学术
    12. 乔世范,刘钰,王刚,张细宝,张海凤,董常瑞,谭晶仁,檀俊坤. 考虑岩石细观结构的TBM滚刀破岩过程数值研究. 中国安全生产科学技术. 2023(07): 106-112 . 百度学术
    13. 向衍斌. 煤系岩石单轴压缩损伤破坏演化规律与表征. 煤矿安全. 2023(09): 88-95 . 百度学术
    14. 赵光明,高宇,吴旭坤. 岩石变刚度实验条件下力学与声发射特性. 安徽理工大学学报(自然科学版). 2023(06): 63-72 . 百度学术
    15. 王桂林,王润秋,孙帆. 块体离散元颗粒模型细观参数标定方法及花岗岩细观演化模拟. 长江科学院院报. 2022(01): 86-93 . 百度学术
    16. 张涛,蔚立元,鞠明和,李明,苏海健,季浩奇. 基于PFC3D-GBM的晶体–单元体尺寸比对花岗岩动态拉伸特性影响分析. 岩石力学与工程学报. 2022(03): 468-478 . 百度学术
    17. 兰恒星,包含,孙巍锋,刘世杰. 岩体多尺度异质性及其力学行为. 工程地质学报. 2022(01): 37-52 . 百度学术
    18. 李博,梁秦源,周宇,赵程,伍法权. 基于CT-GBM重构法的花岗岩裂纹扩展规律研究. 岩石力学与工程学报. 2022(06): 1114-1125 . 百度学术
    19. Tongzhao Zhang,Hongguang Ji,Xiaobo Su,Shuang You,Daolu Quan,Zhou Zhang,Jinzhe Li. Evaluation and classification of rock heterogeneity based on acoustic emission detection. International Journal of Minerals, Metallurgy and Materials. 2022(12): 2117-2125 . 必应学术
    20. 郑强强,徐颖,胡浩,钱佳威,宗琦,谢平. 单轴荷载作用下砂岩的破裂与速度结构层析成像. 岩土工程学报. 2021(06): 1069-1077 . 本站查看
    21. 李博,朱强,张丰收,赵程,伍法权. 基于矿物晶体模型的非均质性岩石双裂纹扩展规律研究. 岩石力学与工程学报. 2021(06): 1119-1131 . 百度学术

    其他类型引用(28)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 49
出版历程
  • 收稿日期:  2014-06-02
  • 发布日期:  2015-03-23

目录

    /

    返回文章
    返回