• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于小波分析的深基坑地表沉降预测研究

郭健, 查吕应, 庞有超, 沈爽爽, 夏鹏

郭健, 查吕应, 庞有超, 沈爽爽, 夏鹏. 基于小波分析的深基坑地表沉降预测研究[J]. 岩土工程学报, 2014, 36(zk2): 343-347. DOI: 10.11779/CJGE2014S2060
引用本文: 郭健, 查吕应, 庞有超, 沈爽爽, 夏鹏. 基于小波分析的深基坑地表沉降预测研究[J]. 岩土工程学报, 2014, 36(zk2): 343-347. DOI: 10.11779/CJGE2014S2060
GUO Jian, ZHA Lü-ying, PANG You-chao, SHEN Shuang-shuang, XIA Peng. Prediction for ground settlement of deep excavations based on wavelet analysis[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 343-347. DOI: 10.11779/CJGE2014S2060
Citation: GUO Jian, ZHA Lü-ying, PANG You-chao, SHEN Shuang-shuang, XIA Peng. Prediction for ground settlement of deep excavations based on wavelet analysis[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 343-347. DOI: 10.11779/CJGE2014S2060

基于小波分析的深基坑地表沉降预测研究  English Version

基金项目: 湖北省自然科学基金项目(2012FFC10701); 住建部科学技术项目计划(2013-K3-10)
详细信息
    作者简介:

    郭 健(1968- ),男,教授,主要从事岩土力学、地下工程风险预测与控制方面的研究与教学。E-mail: guojianxh@163.com。

Prediction for ground settlement of deep excavations based on wavelet analysis

  • 摘要: 深基坑开挖必然引起地表沉降,地表沉降监测数据不可避免要受到施工及周边环境的干扰,使沉降数据真实性受到极大的影响。以武汉深基坑工程的大量监测数据为基础,提出一种小波分析法与径向基神经网络的混合建模方法,对深基坑地表变形进行沉降预测分析。首先运用小波分析对实测数据进行去噪处理,提取反映实际变化的沉降数据作为径向基神经网络输入的特征向量,构建小波网络W-RBF预测模型,采用滚动预测方法对地表沉降进行预测。工程应用结果表明,W-RBF模型预测性能,要优于带有噪声构造的原始数据预测结果,具有较高的预测精度,可满足深基坑工程的信息化施工要求。
    Abstract: Deep excavation will cause ground settlement inevitably. The measured data of ground settlement are usually disturbed by construction and surrounding enviroment, and the validation is greatly affected because of the noise in the settlement data. Based on the large amount of data collected from deep excavations, a new model combining the wavelet analysis with the radial basis function (RBF) neural network is proposed to predict ground settlement. The wavelet analysis is used to denoise effectively the measured data, and the settlement curve close to the practical situation can be obtained and taken as the characteristic vector of the RBF neural input layer. A prediction model for the wavelet network (W-RBF) is formed to predict ground settlement based on rolling prediction. The results of case study show that the prediction performance of W-RBF model is significantly better than that by using raw data with noises. It has high prediction accuracy and is fit for modern information construction.
  • [1] 李 淑, 张顶立, 房 倩, 等. 北京地铁车站深基坑地表变形特性研究[J]. 岩石力学与工程学报, 2012, 31(1): 189-198. (LI Shu, ZHANG Ding-li, FANG Qian, et al. Research on characteristics of ground surface deformation during deep excavation in Beijing subway[J]. Chinese Journal of Rook Mechanics and Engineering, 2012, 31(1): 189-198. (in Chinese))
    [2] 邓英尔, 谢和平. 全过程沉降预测的新模型与方法[J]. 岩土力学, 2005, 26(1): 1-4. (DENG Ying-er, XIE He-ping. New model and method of forecasting settlement during complete process of construction and operation[J]. Rock and Soil Mechanics, 2005, 26(1): 1-4. (in Chinese))
    [3] PECK R B. Deep excavations and tunnelling in soft ground [C]// Proceedings of International Conference on Soil Mechanics and Foundation Engineering. Mexico, 1969: 225-290.
    [4] SCHUSTER M, TUNG G, KUNG C, et a1. Simplified model for evaluating damage potential of buildings adjacent to a braced excavation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(12): 1823-1835.
    [5] AYE Z, KARKI D, SCHULZ C. Ground movement prediction and building damage risk-assessment for the deep excavations and tunneling works in Bangkok subsoil[C]// International Symposium on Underground Excavation and Tunneling. Bangkok, 2006: 281-297.
    [6] 刘沐宇, 冯夏庭. 基于神经网络范例推理的边坡稳定性评价方法[J]. 岩土力学, 2005, 26(2): 193-197. (LIU Mu-yu, FENG Xia-ting. Evaluation of slope stability based on case based reasoning integrated with neural network[J]. Rock and Soil Mechanics, 2005, 26(2): 193-197. (in Chinese))
    [7] 杨兴明, 张培仁, 陈锐锋. B样条小波基在信号去噪中应用与性能分析[J]. 现代雷达, 2006, 28(7): 62-66. (YANG Xing-ming, ZHANG Pei-ren, CHEN Rui-feng. Construction of B-spline wavelet bases and performance analysis in signal-denoising[J]. Modern Radar, 2006, 28(7): 62-66. (in Chinese))
    [8] MALLAT S G. A theory for multi-resolution signal decomposition: the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693.
    [9] GUO J, DING L Y, LUO H B, et al. Wavelet prediction method for ground deformation induced by tunneling[J]. Tunnelling and Underground Space Technology. 2014, 41(3): 137-151.
    [10] DING L Y, MA L, LUO H B, et al. Wavelet Analysis for tunneling-induced ground settlement based on a stochastic model[J]. Tunnelling and Underground Space Technology, 2011, 26(5): 619-628.
    [11] 冯夏庭. 智能岩石力学导论[M].北京:科学出版社,2000. (FENG Xia-ting. Introduction to intelligent rock mechanics[M]. Beijing: Science Press, 2000. (in Chinese))
    [12] 杨成祥, 冯夏庭, 刘红亮, 等. 非线性位移时间序列分析模型的进化识别[J]. 东北大学学报(自然科学版), 2004, 5(5): 497-500. (YANG Cheng-xiang, FENG Xia-ting, LIU Hong-liang, et a1. Evolutionary identification of analysis model for nonlinear displacement time series[J]. Journal of Northeastern University, 2004, 5(5): 497-500. (in Chinese))
    [13] MOODY J, DARKEN C. Fast learning in networks of locally tuned processing[J]. Neural Computation, 1989, 2(1): 281-289.
    [14] 刘鑫朝, 颜宏文. 一种改进的粒子群优化RBF网络学习算法[J]. 计算机技术与发展, 2006(2): 185-187. (LIU Xin-chao, YAN Hong-wen. A RBF neural network learning algorithm based on improved PSO[J]. Computer Technology and Development, 2006(2): 185-187. (in Chinese))
计量
  • 文章访问数:  384
  • HTML全文浏览量:  3
  • PDF下载量:  443
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-27
  • 发布日期:  2014-07-27

目录

    /

    返回文章
    返回