• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

地下压气储能圆形内衬洞室内压和温度引起应力计算

周舒威, 夏才初, 张平阳, 周瑜

周舒威, 夏才初, 张平阳, 周瑜. 地下压气储能圆形内衬洞室内压和温度引起应力计算[J]. 岩土工程学报, 2014, 36(11): 2025-2035. DOI: 10.11779/CJGE201411008
引用本文: 周舒威, 夏才初, 张平阳, 周瑜. 地下压气储能圆形内衬洞室内压和温度引起应力计算[J]. 岩土工程学报, 2014, 36(11): 2025-2035. DOI: 10.11779/CJGE201411008
ZHOU Shu-wei, XIA Cai-chu, ZHANG Ping-yang, ZHOU Yu. Analytical approach for stress induced by internal pressure and temperature of underground compressed air energy storage in a circular lined rock cavern[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2025-2035. DOI: 10.11779/CJGE201411008
Citation: ZHOU Shu-wei, XIA Cai-chu, ZHANG Ping-yang, ZHOU Yu. Analytical approach for stress induced by internal pressure and temperature of underground compressed air energy storage in a circular lined rock cavern[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2025-2035. DOI: 10.11779/CJGE201411008

地下压气储能圆形内衬洞室内压和温度引起应力计算  English Version

基金项目: 国家自然科学基金项目(51278378); 国家高技术研究发展计划(863计划)课题(SS2012AA052501)
详细信息
    作者简介:

    周舒威(1987-),男,博士研究生,主要从事地下工程稳定性和岩石力学研究方面的工作。E-mail:zhoushuwei1016@126.com。

Analytical approach for stress induced by internal pressure and temperature of underground compressed air energy storage in a circular lined rock cavern

  • 摘要: 地下压气储能岩石内衬洞室内,不断变化的气体内压和温度引起的应力场是关乎洞室稳定性、耐久性的重要因素,由此提出了一种计算气压和温度引起应力变化的解析方法。将内衬洞室考虑成由密封层、衬砌和围岩组成,首先建立了洞室温度和气压求解的控制方程;利用拉普拉斯变换和叠加原理得到每个循环内洞室温度和气压随时间的变化;采用热弹性模型得到内压和温度引起的应力场。基于解析方法,给出了典型循环周期内洞室应力变化情况;接着通过一个热-力以及洞室气体耦合求解的数值模型以及不考虑密封层和衬砌的温度场解析方法来验证本文方法;最终探讨了温度对总应力的影响程度,以及不同换热系数的影响。结果表明:本文方法是可行的;温度和内压引起的密封层和衬砌内环向拉应力非常大;温度对于压气储能洞室有着不可忽略的作用,温度对于环向和纵向应力的影响程度要大于对径向应力的影响;换热系数对应力变化影响很大。
    Abstract: As the stress induced by varying temperature and air pressure is important for the stability and durability of underground compressed air energy storage in lined rock caverns, an analytical approach for the induced stress is proposed. The cavern with a sealing layer, concrete lining and host rock is considered, the governing equations for temperature and air pressure of the cavern are established. The temperature field and air pressure during the operation period are obtained using the Laplace transform and the principle of superposition. Then the induced stress variations are determined analytically by employing a thermo-elastic model. The stress induced during a typical operation cycle is illustrated. The approach is subsequently verified by a coupled compressed-air and thermo-mechanical numerical simulation and by a previous study for temperature. Finally, the influence of temperature on the total stress and the impact of heat transfer coefficient are discussed. The results reveal that the caused tensile hoop stresses in the sealing layer and concrete lining are quite large. Moreover, the temperature has a non-negligible effect on the lined cavern for underground compressed air storage, while the hoop and longitudinal stresses are affected by the temperature to a larger extent than the radial stress. In addition, the heat transfer coefficient affects the cavern stress to a high degree.
  • [1] RAJU M, KHAITAN S K. Modeling and simulation of compressed air storage in caverns: a case study of the Huntorf plant[J]. Applied Energy, 2012, 89: 474-481.
    [2] KUSHNIR R, ULLMANN A, DAYAN A. Thermodynamic and hydrodynamic response of compressed air energy storage reservoirs: a review[J]. Rev Chem Eng, 2012, 28: 123-148.
    [3] 李仲奎, 马芳平, 刘 辉. 压气蓄能电站的地下工程问题及应用前景[J]. 岩石力学与工程学报, 2003, 22(增刊1): 2121-2126. (LI Zhong-kui, MA Fang-ping, LIU Hui. Underground engineering problems in compressed air energy storage and its developing future[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(S1): 2121-2126. (in Chinese))
    [4] CROTOGINO F, MOHMEYER K U, SCHARF R. Huntorf CAES: more than 20 years of successful operation[C]// Spring 2001 meeting. Orlando, 2001.
    [5] HAYASHI M. Rock mechanics of compressed air energy storage and super magnetic energy storage in Japan [C]// Rock Mechanics in Japan. Tokyo: Japanese Committee for ISRM, 1991.
    [6] SUCCAR S, WILLIAMS R H. Compressed air energy storage: theory, resources, and applications for wind power[R]. Princeton: Princeton Environmental Institute, Princeton University, 2008.
    [7] ALLEN R D, DOHERTY T J, FOSSUM A F. Geotechnical issues and guidelines for storage of compressed air in excavated hard rock caverns[R]. Springfield: Pacific Northwest Laboratory, 1982.
    [8] LINDBLOM U E. Design criteria for the Brooklyn Union gas storage cavern at JFK Airport[J]. Int J Rock Mech & Min Sci, 1997, 34(3/4): 179.
    [9] ISHIHATA T. Underground compressed air storage facility for CAES-G/T power plant utilizing an airtight lining[J]. Int Soc Rock Mech, 1997, 5(1): 17-21.
    [10] KIM H M, RUTQVIST J, RYU D W, et al. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: a modeling study of air tightness and energy balance[J]. Appl Energy, 2012, 92: 653-667.
    [11] KIM H M, RUTQVIST J, CHOI B H. Feasibility analysis of underground compressed air energy storage in lined rock caverns using the TOUGH-FLAC simulator[C]// TOUGH Symposium 2012. Berkeley: Lawrence Berkeley National Laboratory, 2012.
    [12] SONG W K, RYU D W. Stability analysis of concrete plugs in a pilot cavern for compressed air energy storage[C]// Harmonising Rock Engineering and the Environment. London: Taylor & Francis Group, 2012.
    [13] KIM H M, RUTQVIST J, JEONG J H, et al. Characterizing excavation damaged zone and stability of pressurized lined rock caverns for underground compressed air energy storage[J]. Rock Mech Rock Eng, 2012, 4: 312-323.
    [14] JOHANSSON J. High pressure storage of gas in lined rock caverns: cavern wall design principles[D]. Stockholm: Royal Institute of Technology, 2003.
    [15] RUTQVIST J, KIM H M, RYU D W, et al. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage in lined rock caverns[J]. Int J Rock Mech & Min Sci 52: 71-81.
    [16] KUSHNIR R, DAYAN A, ULLMANN A. Temperature and pressure variations within compressed air energy storage caverns[J]. Int J Heat & Mass Transf, 2012, 55(21/22): 5616-5630.
    [17] 陈剑文, 蒋卫东, 杨春和, 等. 储气库注、采气过程热工分析研究[J]. 岩石力学与工程学报, 2007, 26(增刊1): 2887-2894. (CHEN Jian-wen, JIANG Wei-dong, YANG Chun-he, et al. Study on engineering thermal analysis of gas storage in slat formation during gas injection and production[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 288-2894. (in Chinese))
    [18] BARBUTO F A D A. Performance of numerical inversion of Laplace transforms[J]. Adv Eng Software 1991, 13(3): 148-155.
    [19] 刘利强. 拉普拉斯反变换的一种数值算法[J]. 内蒙古工业大学学报, 2002, 21(1): 47-49. (LIU Li-qiang. An algorithm for numerical inversion of Laplace transforms[J]. Journal of Inner Mongolia Polytechnic University, 2002, 21(1): 4-43. (in Chinese))
    [20] 徐芝纶. 弹性力学[M]. 4版. 北京: 高等教育出版社, 2006. (XU Zhi-lun. Elasticity[M]. 4th ed. Beijing: Higher Education Press, 2006. (in Chinese))
    [21] 张家荣, 赵廷元. 工程常用物质的热物理性质手册[M]. 北京: 新时代出版社, 1987. (ZHANG Jia-rong, ZHAO Ting-yuan. A handbook for the thermo-physical properties of engineering materials[M]. Beijing: New Era Press, 1987. (in Chinese))
    [22] 王志魁. 化工原理[M]. 3版. 北京: 化学工业出版社, 2005. (WANG Zhi-kui. Principles of chemical engineering[M]. 3rd ed. Beijing: Chemical Industry Press, 2005. (in Chinese))
    [23] KUSHNIR R, ULLMANN A, DAYAN A. Thermodynamic models for the temperature and pressure variations within adiabatic caverns of compressed air energy storage plants[J/OL]. [2013-05-14]. doi: 10.1155/2013/603130.
计量
  • 文章访问数:  437
  • HTML全文浏览量:  18
  • PDF下载量:  322
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-17
  • 发布日期:  2014-11-19

目录

    /

    返回文章
    返回