• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

岩体分级BQ与RMR的关系及其力学参数估计

许宏发, 陈锋, 王斌, 华中民, 耿汉生

许宏发, 陈锋, 王斌, 华中民, 耿汉生. 岩体分级BQ与RMR的关系及其力学参数估计[J]. 岩土工程学报, 2014, 36(1): 195-198. DOI: 10.11779/CJGE201401021
引用本文: 许宏发, 陈锋, 王斌, 华中民, 耿汉生. 岩体分级BQ与RMR的关系及其力学参数估计[J]. 岩土工程学报, 2014, 36(1): 195-198. DOI: 10.11779/CJGE201401021
XU Hong-fa, CHEN Feng, WANG Bin, HUA Zhong-min, GEN Han-sheng. Relationship between RMR and BQ for rock mass classification and estimation of its mechanical parameters[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 195-198. DOI: 10.11779/CJGE201401021
Citation: XU Hong-fa, CHEN Feng, WANG Bin, HUA Zhong-min, GEN Han-sheng. Relationship between RMR and BQ for rock mass classification and estimation of its mechanical parameters[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 195-198. DOI: 10.11779/CJGE201401021

岩体分级BQ与RMR的关系及其力学参数估计  English Version

基金项目: 国家973计划项目(2010CB732003)
详细信息
    作者简介:

    许宏发(1964- ),男,江苏泰州人,教授,博士生导师,从事岩土工程方面的教学与研究。E-mail: xuhongfa126@126.com。

  • 中图分类号: TU45

Relationship between RMR and BQ for rock mass classification and estimation of its mechanical parameters

  • 摘要: 在国标《工程岩体分级标准》(GB50218—94)岩体质量分级的基础上,提出了岩体基本质量指标BQ的简化计算方法。根据规范中建议的岩体物理力学参数取值范围,编制了各参数与BQ关系曲线图,通过非线性拟合分析,建立了各物理力学参数与BQ之间关系的经验公式。基于内摩擦角等效原则,通过比较已有的分别用RMR和BQ表达的岩体内摩擦角经验公式,推导出1个BQ和RMR之间的关系方程。同样基于变形模量等效原则,通过比较已有的分别用RMR和BQ表达的岩体变形模量经验公式,推导出4个BQ和RMR之间的关系方程。这5个关系方程与实测结果进行了比较分析,得到了上限线和下限线方程;由内摩擦角等效获得的关系方程趋势较好,取上限线和下限线的中间线对其进行修正,得到了本文建议的RMR和BQ之间的关系方程。
    Abstract: On the basis of rock mass quality classification in China's national standard, Standard for Engineering Classification of Rock Masses (SECRM, GB50218—94), a simplified calculation method for the basic quality index (BQ) of rock mass is proposed. According to the value ranges of various physical mechanical parameters of rock mass in SECRM, the graphs of the relationship between various parameters and BQ are established. Empirical formulas for the relationship between various parameters and BQ are established using the nonlinear fitting analysis method. Based on the equivalent principle of internal friction angles, through comparing the existing equations for describing internal friction angles using BQ and RMR respectively, a relation equation between RMR and BQ is derived. Similarly, based on the equivalent principle of deformation modulus, through comparing the existing equations for describing deformation modulus using BQ and RMR respectively, four relation equations between RMR and BQ are derived. By comparing five relation equations between RMR and BQ with the existing the field test data, the equations for the upper limit and the lower limit lines are found. The results show that the relation equation obtained using the equivalent internal friction angle has good trend, but its value is a little larger, and a correcting relation equation between RMR and BQ is suggested by means of taking medium line between the upper limit and the lower limit lines.
  • [1] GB50218—94 工程岩体分级标准[S]. 1994. GB50218—94 Standard for engineering classification of rock masses[S]. 1994. (in Chinese))
    [2] BIENIAWSKI Z T. Engineering rock mass classifications[M]. New York: The Wiley-Interscience Publication, 1989.
    [3] BARTON N R. A review of the shear strength of filled discontinuities in rock[C]// Norwegian Geotech Inst Publ NO.105. Oslo: Norwegian Geotech Inst. 1974.
    [4] 张立松, 闫相祯, 杨恒林, 等. 基于测井信息的煤岩GSI-JP破碎分级预测[J]. 岩土工程学报, 2011, 33(7): 1091-1096. (ZHANG Li-song, YAN Xiang-zhen, YANG Heng-lin, et al. GSI-JP crushed classification prediction method of coal rock based on logging information[J]. Chinese Journal Geotechnical Engineering, 2011, 33(7): 1091-1096. (in Chinese))
    [5] BARTON N. Some new Q-value correlations to assist in site characrerisation and tunnel design[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39: 185-216.
    [6] 蔡 斌, 喻 勇, 吴晓铭. 《工程岩体分级标准》与Q分类法及RMR分类法的关系及变形参数估计[J].岩石力学与工程学报, 2001, 20(增刊): 1677-1679. (CAI B, YU Y, WU X M. Relationship among national code, Q system and RMR in rock mass classification and evaluation of deformation parameter[J]. Chinese Journal Rock Mechanics and Engineering, 2001, 20(S0): 1677-1679. (in Chinese))
    [7] 姜 平, 孟 伟. 基于岩体质量分级的岩石力学参数研究[J]. 三峡大学学报, 2004, 26(5): 424-427. (JIANG Ping, MENG Wei. Research on rock mechanics parameters of rock quality grade-oriented[J]. Journal of China Three Gorges University (Natural Sciences), 2004, 26(5): 424-427. (in Chinese))
    [8] 闫天俊, 吴雪婷, 吴 立. 地下洞室围岩分类相关性研究与工程应用[J]. 地下空间与工程学报, 2009, 5(6): 1103-1109. (YAN Tian-jun, WU Xue-ting, WU Li. Correlation study on surrounding rock mass classification for underground cavern and its application[J]. Chinese Journal of Underground Space and Engineering, 2009, 5(6): 1103-1109. (in Chinese))
    [9] 许宏发, 周建民, 吴华杰. 国标岩体质量分级的简化方法[J]. 岩土力学, 2005, 26(增刊2): 88-90. (XU Hong-fa, ZHOU Jian-min, WU Hua-jie. Simplified method for national standard for engineering classification of rock mass[J]. Rock and Soil Mechanics, 2005, 26(S2): 88-90. (in Chinese))
    [10] AYDAN Ö, KAWAMOTO T. The assessment of mechanical properties of rock masses through RMR rock classification system[C]// GeoEng2000, UW0926. Melbourne, 2000.
    [11] GOKCEOGLU C, SONMEZ H, KAYABASI A. Predicting the deformation moduli of rock masses[J]. Int J Rock Mech Min Sci, 2003, 40: 701-710.
    [12] SERAFIM L J, PEREIRA P J. Consideration on the geomechanical classification of bieniawski[C]// Proc of the International Symposium on Engineering Geology and Underground Construction. Lisbon, 1983(2): 33-42.
    [13] CHUN B S, LEE Y J, SEO D D, et al. Correlation of deformation modulus by PMT with RMR and rock mass condition[J]. Tunneling and Underground Space Technology, 2006(21): 231-232.
    [14] MOHAMMADI H, RAHMANNEJAD R. The estimation of rock mass deformation modulus using regression and artificial neural networks analysis[J]. Arabian Journal for Science and Engineering, 2010, 35(1): 205-217.
计量
  • 文章访问数:  810
  • HTML全文浏览量:  6
  • PDF下载量:  2207
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-18
  • 发布日期:  2014-01-20

目录

    /

    返回文章
    返回